Materials and Structures

, Volume 30, Issue 4, pp 217–224 | Cite as

Les effets du séchage sur la résistance à l'écaillage du béton avec et sans fumée de silice

  • J. Marchand
  • L. Boisvert
  • M. Pigeon
  • O. Houdusse
  • H. Hornain
Rapports Scientifiques

Résumé

Pour étudier les effets du séchage sur la résistance à l'écaillage dû au gel-dégel en présence de sels fondants, douze mélanges de béton ont été fabriqués. Six mélanges ont été préparés avec un ciment Portland artificiel (de type 10 selon la norme canadienne). Un liant avec fumée de silice a été employé dans la préparation des six autres mélanges. Les autres variables de cette série d'essais concernent le rapport eau/liant (0,25, 0,35 et 0,45), les caractéristiques du réseau de bulles d'air (avec et sans air entraîné) et la température de séchage (20°C, 40°C et 105°C). La résistance à l'écaillage de tous les bétons a été testée selon les prescriptions de la norme ASTM C672. Les résultats des essais d'écaillage indiquent que le séchage à des températures de 40°C et 105°C peut considérablement diminuer la résistance à l'écaillage du béton. Les résultats obtenus démontrent également que l'ajout de fumée de silice et l'abaissement du rapport eau/liant atténuent significativement les effets du séchage. Lorsque le rapport eau/liant est égal ou inférieur à 0,25, l'air entraîné n'est plus requis pour assurer la résistance à l'écaillage du béton quels que soient la température de séchage ou le type de liant utilisé.

Effect of drying on the deicer salt scaling resistance of concrete mixtures with and without silica fume

Abstract

Twelve mixtures were prepared to investigate the influence of drying on the scaling resistance of concrete to freezing and thawing cycles in the presence of deicer salts. Six mixtures were made with an ordinary Portland cement (Canadian type 10), and six with a silica fume blended cement. The other parameters of this series of tests were the water/binder ratio (0.25, 0.35, and 0.45), the characteristics of the air void system (an air-entrained and a non-air-entrained and a non-air-entrained mixture were made with each combination of type of cement and water/binder ratio), and the drying temperature before the salt scaling tests (20°C, 40°C, and 105°C). The deicer salt scaling resistance was determined using the ASTM C 672 standard test. Test results indicate that drying at 40°C and 105°C can considerably reduce the deicer salt scaling resistance of concrete. Test data also show that the use of silica fume and the reduction of the water/binder ratio both significantly reduce the negative influence of drying. In addition, test results indicate that air entrainment is no longer required to obtain a satisfactory scaling resistance when the water/binder ratio is equal to 0.25, irrespective of the type of binder or the drying temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1]
    Sellevold, E.J. and Radjy, F., ‘Drying and resaturation effects on internal friction in hardened cement pastes’,J. Am. Cer. Soc. 59 (5–6) (1976) 256–258.CrossRefGoogle Scholar
  2. [2]
    Patel, R.G., Parrott, L.J., Martin, J.A. and Killoh, D.C., ‘Gradients of microstructure and diffusion properties in cement paste caused by drying’,Cem. Concr. Res. 15(2) (1966) 343–356.CrossRefGoogle Scholar
  3. [3]
    Feldman, R.F., ‘Effect of pre-drying on rate of water replacement from cement paste by propan-2-ol’,Il Cemento 3 (1988) 193–201.Google Scholar
  4. [4]
    Marchand, J., ‘Contribution à l'étude de la détérioration par écaillage du béton en présence de sels fondants’, Thèse de doctorat, École Nationale des Ponts et Chaussées, Paris, France (1993).Google Scholar
  5. [5]
    Bager, D.H. and Sellevold, E.J., ‘Ice formation in hardened cement paste—Part II: Drying and resaturation of room temperature cured paste’,Cem. Concr. Res. 16 (6) (1986) 835–844.CrossRefGoogle Scholar
  6. [6]
    Sellevold, E.J. and Bager, D.H., ‘Some implications of calorimetric ice formation results for frost resistance testing of cement products’, Rapport Technique 86/80 (The Technical University of Denmark, Building Materials Laboratory, 1985).Google Scholar
  7. [7]
    Sellevold, E.J., Bager, D.H., Klitgaard Jensen, K. and Knudsen, T, ‘Silica fume—cement pastes: Hydration and pore structure’, Rapport BML 82.610 (The Norwegian Institute of Technology, Trondheim, 1982).Google Scholar
  8. [8]
    Bazant, Z.P. and Raftshol, W.J., ‘Effect of cracking in drying and shrinkage specimens’,Cem. Concr. Res. 12 (1) (1982) 209–226.CrossRefGoogle Scholar
  9. [9]
    Hwang, C.L. and Young, J.F., ‘Drying shrinkage of Portland cement pastes—Part I: Microcracking during drying’,Cem. Concr. Res. 14 (3) (1984) 585–594.CrossRefGoogle Scholar
  10. [10]
    Verbeck, G.J. and Klieger, P., ‘Studies of “salt” scaling of concrete’,Highway Research Board Bulletin 150 (1957) 1–13.Google Scholar
  11. [11]
    Wong, A.Y.C., Anderson, C.L. and Hilsdorf, H.K., ‘The effect of drying on the freeze-thaw durability of concrete’, Engineering Experiment Station Bulletin 506 (University of Illinois, 1973).Google Scholar
  12. [12]
    Petersson, P.E., ‘Scaling resistance of concrete—Influence of curing conditions’, Groupe de Travail TC 117 de la RILEM, Dübendorf (octobre 1992).Google Scholar
  13. [13]
    Sorensen, E.G., ‘Freezing and thawing resistance of condensed silica fume (microsilica) concrete exposed to deicing chemicals’,ACI Special Publication SP-79 (1983) 709–718.Google Scholar
  14. [14]
    Sellevold, E.J. and Farstad, T., ‘Frost/salt testing of concrete: Effect of test parameters and concrete moisture history’,Nord. Concr. Res. 10 (1991) 121–138.Google Scholar
  15. [15]
    Canadian Standard Association, ‘Precast Concrete Paving Blocks’, CSA/CAN3 A231.2-M85.Google Scholar
  16. [16]
    Hornain, H. and Regourd, M., ‘Microcracking of concrete’, 8th Inter. Cong. on the Chemistry of Cement, Rio de Janeiro, Brazil, V (1986) 53–59.Google Scholar
  17. [17]
    Hornain, H., Marchand, J., Ammouche, A., Commène, J.P. and Moranville, M., ‘Microscopic observation of cracks in concrete—A new sample preparation technique using dye impregnation’,Cem. Concr. Res. 26 (4) (1996) 573–583.CrossRefGoogle Scholar
  18. [18]
    Stroeven, P., ‘Geometric probability approach to the examination of microcracking in plain concrete’,J. Mat. Sci. 14 (1979) 1141–1151.CrossRefGoogle Scholar
  19. [19]
    Pleau, R., Pigeon, M., Faure, R.M. and Sedran, T., ‘Air voids in concrete: A study of the influence of superplasticizers by means of scanning electron microscopy and optical microscopy’,ACI Special Publication SP-122 (1990) 105–124.Google Scholar
  20. [20]
    Foy, C., Pigeon, M. and Banthia, N., ‘Freeze-thaw durability and deicer salt scaling resistance of a 0.25 water-cement ratio concrete’,Cem. Concr. Res. 18 (4) (1988) 604–614.CrossRefGoogle Scholar
  21. [21]
    Gagné, R., Pigeon, M. and Aïtcin, P.C., ‘Deicer salt scaling resistance of high-strength concretes made with different cements’,ACI Special Publication SP-126 (1991) 185–199.Google Scholar
  22. [22]
    Ringot, E., ‘Automatic quantification of microcracks network by stereological method of total projections in mortars and concretes’,Cem. Concr. Res. 18 (1) (1988) 35–43.CrossRefGoogle Scholar
  23. [23]
    Ollivier, J.P., ‘A non destructive procedure to observe the microcracks of concrete by scanning electron microscopy’,Cem. Concr. Res. 15 (6) (1985) 1055–1060.CrossRefGoogle Scholar
  24. [24]
    Preece, C.M., Frolund, T. and Bager, D.H., ‘Chloride ion diffusion in low porosity silica cement paste’, Rapport BML 82.610 (The Norwegian Institute of Technology, Trondheim, 1982) 51–58.Google Scholar
  25. [25]
    Därr, G.M., Punzet, M. and Ludwig, U., ‘On the chemical and thermal stability of ettringite’, in ‘summaries of Contributions’, Seminar on the Reaction of Aluminates during the Settings of Cements, Eindhoven, The Netherlands (Cembureau, 1977) 4 p.Google Scholar
  26. [26]
    Abo-El-Enein, S.A., Hanafi, S. and Hekai, E.E., ‘Thermal and physicochemical studies on ettringite—Part II: Deshydration and thermal stability’,Il Cemento 2 (1988) 121–131.Google Scholar
  27. [27]
    Scrivener, K.L. and Weiker, W., ‘Advances in hydration of cements at low, ambient and elevated temperatures’, 8th Inter Cong. on the Chemistry of Cement, New Dehli, India,I (III) (1992) 447–482.Google Scholar

Copyright information

© RILEM 1997

Authors and Affiliations

  • J. Marchand
    • 1
  • L. Boisvert
    • 1
  • M. Pigeon
    • 1
  • O. Houdusse
    • 2
  • H. Hornain
    • 2
  1. 1.Centre de Recherche Interuniversitaire sur le BétonUniversité LavalQuébecCanada
  2. 2.Laboratoire d'Études et de Recherches sur les MatériauxBagnoletFrance

Personalised recommendations