Advertisement

Materials and Structures

, Volume 29, Issue 1, pp 9–18 | Cite as

Tensile cracking in concrete and sandstone: Part 1—Basic instruments

  • Adri Vervuurt
  • Erik Schlangen
  • Jan G. M. Van Mier
Article

Abstract

In this paper, the behaviour of concrete and sandstone specimens subjected to uniaxial tension is described in detail. The results are a summary of the work completed over the past years and will be presented in two parts. A lattice model has been developed, which is used to explain the behaviour observed in laboratory-scale specimens. The model, which will be outlined in this first paper, adopts a perfectly elastic brittle fracture law at the meso-level (particle level) of the material and is capable of simulating crack face bridging in the softening regime quite realistically. The comparison with crack patterns observed in a series of vacuum impregnation tests is quite favourable. Although the crack patterns compare well, the load-deformation diagrams calculated with the model are still too brittle in comparison with experimentally-measured load-displacement responses. Neglecting the small particles in the material structure and omitting the third dimension in the analyses are two reasons for the overrated brittleness and are worked out in this paper. Because of the localised nature of the fracture process in the softening branch, the specimen size and boundary conditions must have a significant effect on the process. The effect of boundary rotations is analysed in part 2 of this paper.

Keywords

Beam Element Triangular Lattice Crack Pattern Uniaxial Tensile Test Random Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

On expose en détail le comportement en traction du béton et du grès. Les résultats présentés résument le travail de ces dernières années. Ce rapport est divisé en deux parties. Dans la première, on présente un modèle numérique réticulaire permettant d'analyser le comportement des matériaux granulaires hétérogènes à l'échelle des éprouvettes de laboratoire. Un critère de fracture élastique-fragile est défini à l'échelle des granulats dans les matériaux. La mécanique du «crack face bridging» dans le régime d'adoucissement est simulée de façon très réaliste. La comparaison avec des fissures simultées et mesurées dans des essais d'imprégnation est tout à fait favorable. Malgré la bonne concordance des modèles de fissuration, les diagrammes contrainte/déformation calculés avec le modèle numérique sont encore trop fragiles par rapport à ceux qu'on obtient avec les réponses contrainte/déplacement mesurées de façon expérimentale. L'excès de fragilité s'explique du fait qu'on n'a pas tenu compte des petites particules de granulat et de la troisième dimension dans les analyses. Dans la deuxième partie, on rend compte de l'effet de la chamière montée sur les dalles de chargement dans les essais en traction. On compare les résultats des essais avec les simulations numériques et on observe un résultat très significatif sur l'énergie de rupture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hillerborg, A., Modeer, M. and Petersson, P. E., ‘Analysis of crack formation and crack growth in concrete by means of fracture and finite elements’,Cem. Concr. Res,6 (6) (1976), 773–782.CrossRefGoogle Scholar
  2. [2]
    Hordijk, D. A., ‘Local Approach to Fatigue of Concrete’, Ph.D. Dissertation, Delft University of Technology (1991).Google Scholar
  3. [3]
    Guinea, G. V., Planas, M. and Elices, M., ‘Measurements of the fracture energy using three point bend tests: Part 1: Influence of experimental procedures’,Mat. Struct.,25 (1992), 212–218.CrossRefGoogle Scholar
  4. [4]
    Schlangen, E., ‘Experimental and Numerical Analysis of Fracture Processes in Concrete’, Ph.D. Dissertation, Delft University of Technology, (1993).Google Scholar
  5. [5]
    Van Mier, J. G. M., ‘Fracture under complex stress’,HERON,31 (3) (1986), 1–90.Google Scholar
  6. [6]
    Daerga, P. A., ‘Some Experimental Fracture Mechanics Studies in Mode I of Concrete and Wood’, Licenciate Thesis, Luleå University of Technology, (1992).Google Scholar
  7. [7]
    Bazant, Z. P. and Cedolin, L., ‘Why direct tension test specimens break flexing to the side’,J. Struct. Eng. (ASCE),119 (1993), 1101–1113.CrossRefGoogle Scholar
  8. [8]
    Van Mier, J. G. M., ‘Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging’,Cem. Concr. Res.,21 (1) (1991), 1–15.CrossRefGoogle Scholar
  9. [9]
    Van Mier, J. G. M., ‘Crack Face Bridging in Normal, High Strength and Lytag Concrete’, in Fracture Process in Concrete, Rock and Ceramics, (eds. J. G. M. Van Mier, J. G. Rots and A. Bakker), Chapman & Hall, London/New-York, (1991), 27–40.Google Scholar
  10. [10]
    Schlangen, E. and Van Mier, J. G. M., ‘Experimental and numerical analysis of micromechanisms of fracture of cement-based composites’,Cem. Concr. Comp.,14 (1992), 105–118.CrossRefGoogle Scholar
  11. [11]
    Schlangen, E. and Van Mier J. G. M., ‘Micromechanical analysis of fracture of concrete’,Int. J. Damage. Mech.,1 (1992), 435–454.Google Scholar
  12. [12]
    Van Mier, J. G. M., Vervuurt, A. and Schlangen, E., ‘Analysis of Fracture Mechanisms in Particle Composites’, in Micromechanisms of Concrete and Cementitious Composites, (ed. C. Huet), Presses Polytechniques et Universitaires Romandes, Lausanne, (1993), 159–170.Google Scholar
  13. [13]
    Van Mier, J. G. M., Vervuurt, A. and Schlangen, E., ‘Crack Growth Simulations in Concrete and Rock’, in Probabilities and Materials. Tests, Models and Applications, (ed. D. Breysse), Kluwer Academic Publishers,269 (1994), 377–388.Google Scholar
  14. [14]
    Hrennikof, A., ‘Solution of problems of elasticity by the framework method’,J. Appl. Mech.,12 (1941), A169-A175.Google Scholar
  15. [15]
    Burt, N. J. and Dougill, J. W., ‘Progressive failure in a model-heterogeneous medium’,J. Engne. Mech. Div. (ASCE),103 (1977), 365–376.Google Scholar
  16. [16]
    Bazant, Z. P., Tabbara, M. R., Kazemi, M. T. and Pijaudier-Cabot, G., ‘Random particle model for fracture of aggregate of fiber composites’,J. Eng. Mech. (ASCE),116 (1990), 1686–1705.Google Scholar
  17. [17]
    Curtin, W. A. and Scher, H., ‘Brittle fracture in disordered materials: A spring network model’,J. Mat. Res.,5 (1990), 535–553.Google Scholar
  18. [18]
    Herrmann, H. J. and Roux, S. (eds.), ‘Statistical Models for the Fracture of Disordered Media’, Amsterdam, (1990).Google Scholar
  19. [19]
    Murat, M., Anholt, M. and Wagner, H. D., ‘Fracture behavior of short-fiber reinforced materials’,J. Mater. Res.,7 (1992), 3120–3131.Google Scholar
  20. [20]
    Moukarzel, C. and Herrmann, H. J., ‘A Vectorizable Random Lattice’,Preprint HLZR 1/92, HLZR-KFA, Jülich, Germany, (1992).Google Scholar
  21. [21]
    Schlangen, E. and Van Mier, J. G. M., ‘Fracture Simulations in Concrete and Rock Using a Random Lattice’, in Computer Methods and Advances in Geomechanics IACMAG8, (eds. H. J. Siriwardane and M. M. Zaman), Balkema Rotterdam, (1994), 1641–1646.Google Scholar
  22. [22]
    Van Vliet, M. R. A. and Van Mier, J. G. M., ‘Comparison of Lattice-Type Fracture Models for Concrete under Biaxal Loading Regimes’, in Proc. IUTAM Symp. on Size-Scale Effects in the Failure Mechanisms of Materials and Structures, Politecnico di Torino, Department of Structural Engineering, Torino, Italy, 1994) (in print).Google Scholar
  23. [23]
    Vervuurt, A. and Van Mier, J. G. M., ‘A Lattice Approach for Analyzing Steel-Concrete Bond-Slip-Layer Fracture’, in ACI Special Publication on Interface Fracture and Bond, (1994) (in press).Google Scholar
  24. [24]
    Mihashi, H. and Nomura, N., ‘Microcracking and tension-softening of concrete’,Cem. Concr. Com.,14 (2) (1992), 91–103.CrossRefGoogle Scholar
  25. [25]
    Van Mier, J. G. M., Schlangen, E., Visser, J. H. M. and Vervuurt, A., ‘Experimental and Numerical Analysis of Cracking in Concrete and Sandstone’, Topics in Applied Mechanics, (eds. J. F. Dijksman and F. T. M. Nieuwstadt), Kluwer Academic Publishers, Dordrecht (1993), 65–72.Google Scholar
  26. [26]
    Sempere, J.-C. and MacDonald, K. C., ‘Overlapping spreading centers: Implications from crack growth simulation by the displacement discontinuity method’,Tectonics,5 (1986), 151–161.CrossRefGoogle Scholar
  27. [27]
    Van Mier, J. G. M., Schlangen, E. and Vervuurt, A., ‘Tensile cracking in concrete and sandstone: Part 2: Effect of boundary rotations’, to appear inMat. Struct.Google Scholar

Copyright information

© RILEM 1996

Authors and Affiliations

  • Adri Vervuurt
    • 1
  • Erik Schlangen
    • 1
  • Jan G. M. Van Mier
    • 1
  1. 1.Stevin LaboratoryDelft University of TechnologyDelftThe Netherlands

Personalised recommendations