The strength design method for reinforced concrete around the world

Abstract

In the 40 years since the American Concrete Institute (ACI) 318-56 Code introduced the ultimate strength design method, it has become the primary method for reinforced concrete design in the United States. The concept of ultimate or limit state design has also been incorporated into building codes around the world. However, the codes of different countries do not agree on the factors used to relate the service loads to ultimate loads. This article reviews the basis for the strength design method and compares the treatment of the strength design concept by codes around the world.

Résumé

Au cours des 40 années qui ont suivi l'introduction, grâce au code de l'American Concrete Institute ACI 318-56, de la méthode de calcul de la résistance à la rupture, celle-ci est devenue la plus couramment utilisée aux États-Unis pour le calcul du béton armé. Le concept de calcul à l'état-limite ou à la rupture a également été introduit dans les codes du bâtiment de divers pays. Toutefois, ces codes ne concordent pas sur les facteurs utilisés pour établir la corrélation entre charges de service et charges ultimes. L'article analyse les bases de cette méthode de calcul et compare les diverses façons dont ce concept est traité dans les codes à travers le monde.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    ACI Committee 318, ‘Building Code Requirements for Reinforced Concrete (ACI 318-89)’, American Concrete Institute, Detroit, MI, USA, 1989, 111 pages. Also 318-56, 318-63, 318-71, 318-77, and 318-83

    Google Scholar 

  2. [2]

    Standards Association of Australia, ‘As 3600—1988 Concrete Structures’, Standards House, North Sydney, N.S.W Australia.

  3. [3]

    Canadian Standards Association, ‘Design of Concrete Structures for Buildings (CAN3-A23.3-M84)’, CSA, Rexdale, Ontario, Canada.

  4. [4]

    British Standards Association, ‘The Structural Use of Concrete, BS 8110, 1985’, BSA, London, England.

    Google Scholar 

  5. [5]

    CEB-FIP Model Code 1990, Comité Euro-International du Béton, Lausanne, Switzerland.

  6. [6]

    Taerwe, L. R., ‘Partial safety factor for high strength concrete under compression’, Proceedings of High-Strength Concrete 1993, Lillehammer, Norway, June 1993.

  7. [7]

    MacGregor, J. G., ‘Safety and limit states design for reinforced concrete’,Canadian Journal of Civil Engineering,3, 4, (December 1976).

  8. [8]

    Ellingwood, B., Galambos, T., MacGregor, J. G. and Cornell, C. A., ‘Development of a Probability Based Load Criterion for American National Standard A58’, NBS Special Publication 577, NBS, 1980.

Download references

Author information

Affiliations

Authors

Additional information

Editorial note Dr. Tarun R. Naik is a RILEM Senior Member, Since 1992 he has been involved in the work of RILEM Technical Committee 126-IPT on in-place testing of hardened concrete.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zachar, J.A., Naik, T.R. The strength design method for reinforced concrete around the world. Mat. Struct. 29, 250–252 (1996). https://doi.org/10.1007/BF02485947

Download citation

Keywords

  • Ultimate Load
  • None None
  • Dead Load
  • Service Load
  • Live Load