algebra universalis

, Volume 4, Issue 1, pp 316–322 | Cite as

Some annihilator conditions on distributive lattices

  • Brian A. Davey


Prime Ideal Distributive Lattice Homomorphic Image Commutative Semigroup Minimal Prime Ideal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Balbes and A. Horn,Stone lattices, Duke Math. J.38 (1971), 537–546.MathSciNetCrossRefGoogle Scholar
  2. [2]
    R. Beazer,Hierarchies of distributive lattices satisfying annihilator identities. J. Lond. Math. Soc. (to appear).Google Scholar
  3. [3]
    W. H. Cornish,Normal lattices, J. Austral. Math. Soc.14 (1972), 200–215.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. H. Cornish,n-Normal lattices. Proc. Amer. Math. Soc. (to appear).Google Scholar
  5. [5]
    W. H. Cornish,The multiplier extension of a distributive lattice, J. Algebra (to appear).Google Scholar
  6. [6]
    G. Grätzer and H. Lakser,The structure of pseudocomplemented distributive lattices. II:Congruence extension and amalgamation. Trans. Amer. Math. Soc.156 (1971), 343–358.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    G. Grätzer and H. Lakser,The structure of pseudocomplemented distributive lattices. IIIInjectives and absolute subretracts, Trans. Amer. Math. Soc.169 (1972), 475–487.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    G. Grätzer and E. T. Schmidt,On a problem of M. H. Stone, Acta Math. Acad. Sci. Hung.8 (1957), 455–460.MATHCrossRefGoogle Scholar
  9. [9]
    A. Horn,Logic with truth values in a linearly ordered Heyting algebra, J. Symb. Logic34 (1969), 475–480.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    T. Katriňák,Die Kennzeichnung der distributiven pseudokomplementären Halbverbände, J. rein und angewandte Math.241 (1970), 160–179.MATHCrossRefGoogle Scholar
  11. [11]
    J. Kist,Minimal prime ideals in commutative semigroups. Proc. Lond. Math. Soc. (Ser. 3)13 (1963), 31–50.MATHMathSciNetGoogle Scholar
  12. [12]
    H. Lakser,The structure of pseudocomplemented distributive lattices. I:Subdirect decomposition, Trans. Amer. Math. Soc.156 (1971), 335–342.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    K. B. Lee,Equational classes of distributive pseudo-complemented lattices, Canad. J. Math.22 (1970), 881–891.MATHMathSciNetGoogle Scholar
  14. [14]
    M. Mandelker,Relative annihilators in lattices, Duke Math. J.40 (1970), 377–386.MathSciNetCrossRefGoogle Scholar
  15. [15]
    T. P. Speed,Two congruences on distributive lattices. Bull. Soc. Roy. Sci. Liège38 (1969), 86–95.MATHMathSciNetGoogle Scholar
  16. [16]
    J. Varlet,On the characterization of Stone lattices, Acta Sci. Math. (Szeged)27 (1966), 81–84.MATHMathSciNetGoogle Scholar
  17. [17]
    P. Wakfer,Generalizations of a theorem on distributive pseudo-complemented lattices, Notices Amer. Math. Soc.17 (1970), 949. Abstract ≠70T-A217.Google Scholar

Copyright information

© Birkhäuser Verlag 1974

Authors and Affiliations

  • Brian A. Davey
    • 1
  1. 1.University of ManitobaWinnipegCanada

Personalised recommendations