algebra universalis

, Volume 4, Issue 1, pp 259–267 | Cite as

Injective double Stone algebras

  • T. Katriňák


Prime Ideal Boolean Algebra Distributive Lattice Algebra UNIV Heyting Algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Balbes and G. Grätzer,Injective and projective Stone algebras, Duke Math. J.,38 (1971), 339–347.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. A. Day,Injectivity in congruence distributive equational classes, Ph.D. Thesis, McMaster University, 1970.Google Scholar
  3. [3]
    G. Grätzer,Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, 1971.MATHGoogle Scholar
  4. [4]
    T. Hecht and T. Katriňák,Equational classes of relative Stone algebras, Notre Dame J. Formal Logic13 (1972), 248–254.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Katriňák,The structure of distributive double p-algebras. Regularity and congruences, Algebra Univ.3 (1972), 248–246.Google Scholar
  6. [6]
    H. Lakser,Injective hulls of Stone algebras, Proc. Amer. Math. Soc.24 (1970), 524–529.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    W. Taylor,Residually small varieties, Algebra Univ.2 (1972), 33–53.MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1974

Authors and Affiliations

  • T. Katriňák
    • 1
  1. 1.Prírodovedeckej Fakulty Univerzity KomenskehoBratislavaCzechoslovakia

Personalised recommendations