algebra universalis

, Volume 4, Issue 1, pp 259–267 | Cite as

Injective double Stone algebras

  • T. Katriňák


Prime Ideal Boolean Algebra Distributive Lattice Algebra UNIV Heyting Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Balbes and G. Grätzer,Injective and projective Stone algebras, Duke Math. J.,38 (1971), 339–347.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    R. A. Day,Injectivity in congruence distributive equational classes, Ph.D. Thesis, McMaster University, 1970.Google Scholar
  3. [3]
    G. Grätzer,Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., San Francisco, 1971.MATHGoogle Scholar
  4. [4]
    T. Hecht and T. Katriňák,Equational classes of relative Stone algebras, Notre Dame J. Formal Logic13 (1972), 248–254.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Katriňák,The structure of distributive double p-algebras. Regularity and congruences, Algebra Univ.3 (1972), 248–246.Google Scholar
  6. [6]
    H. Lakser,Injective hulls of Stone algebras, Proc. Amer. Math. Soc.24 (1970), 524–529.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    W. Taylor,Residually small varieties, Algebra Univ.2 (1972), 33–53.MATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1974

Authors and Affiliations

  • T. Katriňák
    • 1
  1. 1.Prírodovedeckej Fakulty Univerzity KomenskehoBratislavaCzechoslovakia

Personalised recommendations