algebra universalis

, Volume 4, Issue 1, pp 41–43 | Cite as

A note on equationally compact algebras

  • Sydney Bulman-Fleming


Finite Subset Unary Algebra Universal Algebra Preceding Argument Topological Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Grätzer,Universal algebra, Van Nostrand, Princeton, N. J. 1968.MATHGoogle Scholar
  2. [2]
    J. Mycielski,Some compactifications of general algebras, Colloq. Math.13 (1964), 1–9.MATHMathSciNetGoogle Scholar
  3. [3]
    W. Taylor,Some constructions of compact algebras, Annals of Math. Logic3 (1971), 395–435MATHCrossRefGoogle Scholar
  4. [4]
    W. Taylor,Atomic compactness and graph theory, Fund. Math.65 (1969), 139–145MATHMathSciNetGoogle Scholar
  5. [5]
    B. Węglorz,Equationally compact algebras I, Fund. Math.59 (1966), 289–298.MathSciNetGoogle Scholar
  6. [6]
    G. H. Wenzel,Equational compactness in universal algebras, Habilitationsschrift, Mannheim, 1971Google Scholar
  7. [7]
    G. H. Wenzel,Subdirect irreducibility and equational compactness in unary algebras <A; f>, Arch. Math. (Basel)21 (1970), 256–264MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1974

Authors and Affiliations

  • Sydney Bulman-Fleming
    • 1
  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations