algebra universalis

, Volume 7, Issue 1, pp 265–271 | Cite as

Congruence lattices of distributivep-algebras

  • Tibor Katriňák


Boolean Algebra Distributive Lattice Algebra UNIV Congruence Relation Congruence Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Birkhoff, Lattice theory, third ed., American Mathematical Society, Providence R.I., 1967.Google Scholar
  2. [2]
    A. Day,Varieties of Heyting algebras (preprint).Google Scholar
  3. [3]
    G. Grätzer, Lattice theory. First concepts and distributive lattices, W. H. Freeman and Co., 1971.Google Scholar
  4. [4]
    G. Grätzer andH. Lakser,The structure of pseudo-complemented distributive lattices II. Congruence extension and amalgamation, Trans. Amer. Math. Soc.156 (1971), 343–358.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Hecht andT. Katriňák,Equational classes of relative Stone algebras, Notre Dame J. Formal Logic13 (1972), 248–254.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    B. Jónsson, Topics in Universal Algebra, Lecture Notes in Mathematics, Springer-Verlag, vol. 250, 1972.Google Scholar
  7. [7]
    T. Katriňák,Über eine Konstruktion der distributiven pseudokomplementären Verbände, Math. Nachr.53 (1972), 85–99.MathSciNetGoogle Scholar
  8. [8]
    —,Die Kennzeichnung der beschränkten Brouwerschen Verbände, Czech. Math. J.22(97) (1972), 427–434.Google Scholar
  9. [9]
    —,On a problem of G. Grätzer, Proc. Amer. Math. Soc.57 (1976), 19–24.MathSciNetCrossRefGoogle Scholar
  10. [10]
    H. Lakser,The structure of pseudocomplemented distributive lattices I. Subdirect decomposition, Trans. Amer. Math. Soc.156 (1971), 335–342.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    H. Rasiowa andR. Sikorski,The mathematics of metamathematics, Monog. Mat. Vol. XLI, PWN, Warsaw, 1963.MATHGoogle Scholar
  12. [12]
    E. T. Schmidt, Kongruenzrelationen algebraischer Strukturen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969.Google Scholar

Copyright information

© Birkhäuser Verlag 1977

Authors and Affiliations

  • Tibor Katriňák
    • 1
  1. 1.Katedra algebry a teórie cisel PFUKBratislavaCzechoslovakia

Personalised recommendations