algebra universalis

, Volume 8, Issue 1, pp 354–356 | Cite as

An exchange property for modular lattices

  • Herbert S. Gaskill
  • Ivan Rival


Finite Length Exchange Property Fundamental Result Multiple Exchange Modular Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. Dilworth,Note on the Kurosh-Ore theorem, Bull. Amer. Math. Soc.52 (1946), 659–663.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    C. Greene,A multiple exchange property for bases, Proc. Amer. Math. Soc39 (1973), 45–50.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    C. Greene,Another exchange property for bases, Proc. Amer. Math. Soc.46 (1974), 155–156.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. G. Kuroš,Durchschnittsdarstellungen mit irreduziblen Komponenten in Ringen und sogenannten Dualgruppen, Mat. Sbornik42 (1935), 613–616MATHGoogle Scholar
  5. [5]
    O. Ore,On the foundations of abstract algebra, II, Annals of Math.37 (1936), 265–292.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • Herbert S. Gaskill
    • 1
    • 2
  • Ivan Rival
    • 1
    • 2
  1. 1.Memorial University of NewfoundlandSt. John'sCanada
  2. 2.University of CalgaryCalgaryCanada

Personalised recommendations