algebra universalis

, Volume 5, Issue 1, pp 329–332 | Cite as

Finite embeddability in a class of infinitary Algebras

  • Allan B. Cruse
  • Mary F. Neff


Word Problem Triple System Finite Order Combinatorial Theory Steiner Triple System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Banaschewski and E. Nelson,On residual finiteness and finite embeddability, Algebra Universalis2 (1972), 361–364.MATHMathSciNetGoogle Scholar
  2. [2]
    R. Chaffer, M. Eggen, R. St. Andre, and D. Smith,Strong finite embeddability for classes of quasigroups, J. Combinatorial Theory, Ser. A (to appear).Google Scholar
  3. [3]
    A. Cruse,On the finite completion of partial latin cubes, J. Combinatorial Theory, Ser. A,17 (1974), 112–119.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Evans,Homomorphisms of non-associative systems, J. London Math. Soc.24 (1949), 254–260.MathSciNetGoogle Scholar
  5. [5]
    T. Evans,The word problem for abstract algebras, J. London Math. Soc.26 (1951), 64–71.MATHMathSciNetGoogle Scholar
  6. [6]
    T. Evans,Embedding incomplete latin squares, Amer. Math. Monthly67 (1960), 958–961.MathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Evans,Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Soc. (2),1 (1969), 399–403.MATHMathSciNetGoogle Scholar
  8. [8]
    T. Evans,Finitely presented loops, lattices, etc., are hopfian, J. London Math. Soc.44 (1969), 551–552.MATHMathSciNetGoogle Scholar
  9. [9]
    T. Evans,Residual finiteness and finite embeddability (A remark on a paper by Banaschewski and Nelson), Algebra Universalis2 (1972), 397.MATHMathSciNetGoogle Scholar
  10. [10]
    T. Evans,Latin cubes orthogonal to their transposes—a ternary analogue of Stein quasigroups, Aequationes Math.9 (1973), 296–297.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. C. Lindner,Embedding partial idempotent latin squares, J. Combinatorial Theory10 (1971), 240–245.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. C. Lindner,Finite embedding theorems for partial latin squares, quasigroups, and loops, J. Combinatorial Theory13 (1972), 339–345.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    C. C. Lindner,Finite partial cyclic triple systems can be finitely embedded, Algebra Universalis1 (1971), 93–96.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Treash,The completion of finite incomplete Steiner triple systems with applications to loop theory, J. Combinatorial Theory10 (1971), 259–265.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1975

Authors and Affiliations

  • Allan B. Cruse
    • 1
    • 2
  • Mary F. Neff
    • 1
    • 2
  1. 1.University of San FranciscoSan FranciscoUSA
  2. 2.Emory UniversityAtlantaUSA

Personalised recommendations