algebra universalis

, Volume 5, Issue 1, pp 329–332 | Cite as

Finite embeddability in a class of infinitary Algebras

  • Allan B. Cruse
  • Mary F. Neff
Article
  • 13 Downloads

Keywords

Word Problem Triple System Finite Order Combinatorial Theory Steiner Triple System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Banaschewski and E. Nelson,On residual finiteness and finite embeddability, Algebra Universalis2 (1972), 361–364.MATHMathSciNetGoogle Scholar
  2. [2]
    R. Chaffer, M. Eggen, R. St. Andre, and D. Smith,Strong finite embeddability for classes of quasigroups, J. Combinatorial Theory, Ser. A (to appear).Google Scholar
  3. [3]
    A. Cruse,On the finite completion of partial latin cubes, J. Combinatorial Theory, Ser. A,17 (1974), 112–119.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    T. Evans,Homomorphisms of non-associative systems, J. London Math. Soc.24 (1949), 254–260.MathSciNetGoogle Scholar
  5. [5]
    T. Evans,The word problem for abstract algebras, J. London Math. Soc.26 (1951), 64–71.MATHMathSciNetGoogle Scholar
  6. [6]
    T. Evans,Embedding incomplete latin squares, Amer. Math. Monthly67 (1960), 958–961.MathSciNetCrossRefGoogle Scholar
  7. [7]
    T. Evans,Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Soc. (2),1 (1969), 399–403.MATHMathSciNetGoogle Scholar
  8. [8]
    T. Evans,Finitely presented loops, lattices, etc., are hopfian, J. London Math. Soc.44 (1969), 551–552.MATHMathSciNetGoogle Scholar
  9. [9]
    T. Evans,Residual finiteness and finite embeddability (A remark on a paper by Banaschewski and Nelson), Algebra Universalis2 (1972), 397.MATHMathSciNetGoogle Scholar
  10. [10]
    T. Evans,Latin cubes orthogonal to their transposes—a ternary analogue of Stein quasigroups, Aequationes Math.9 (1973), 296–297.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. C. Lindner,Embedding partial idempotent latin squares, J. Combinatorial Theory10 (1971), 240–245.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    C. C. Lindner,Finite embedding theorems for partial latin squares, quasigroups, and loops, J. Combinatorial Theory13 (1972), 339–345.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    C. C. Lindner,Finite partial cyclic triple systems can be finitely embedded, Algebra Universalis1 (1971), 93–96.MATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Treash,The completion of finite incomplete Steiner triple systems with applications to loop theory, J. Combinatorial Theory10 (1971), 259–265.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1975

Authors and Affiliations

  • Allan B. Cruse
    • 1
    • 2
  • Mary F. Neff
    • 1
    • 2
  1. 1.University of San FranciscoSan FranciscoUSA
  2. 2.Emory UniversityAtlantaUSA

Personalised recommendations