algebra universalis

, Volume 5, Issue 1, pp 257–262 | Cite as

Strong finite embeddability for classes of quasigroups

  • Robert Chaffer
  • Maurice Eggen
  • Richard St. Andre
  • Douglas Smith


Word Problem Distinct Element Triple System Algebra UNIV Combinatorial Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Cruse,On embedding incomplete latin squares, Journal of Combinatorial Theory (to appear).Google Scholar
  2. [2]
    T. Evans,Combinatorial universal algebra, Proceedings of a Conference on Combinatorics at Memphis State University, August 1972.Google Scholar
  3. [3]
    T. Evans,The word problem for abstract algebras, J. London Math. Society26 (1951), 64–71.MATHGoogle Scholar
  4. [4]
    T. Evans,Embeddability and the word problem, J. London Math. Society28 (1953), 76–80.MATHGoogle Scholar
  5. [5]
    T. Evans,Embedding incomplete latin squares, American Mathematical Monthly67 (1967), 958–961.CrossRefGoogle Scholar
  6. [6]
    T. Evans,Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Society (2)1 (1969), 399–403.MATHGoogle Scholar
  7. [7]
    T. Evans,Finitely presented loops, lattices, etc., are Hopfian, J. London Math. Society44 (1969), 551–552.MATHGoogle Scholar
  8. [8]
    A. A. Gvaramiya and M. M. Glukov,Solution of the basic algorithmic problems in some classes of quasigroups with identities, Sibirskii Mathematicheskii Zhurnal10 (1969), 297–317.MATHGoogle Scholar
  9. [9]
    C. C. Lindner,Embedding partial idempotent latin squares, J. Combinatorial Theory10 (1971), 240–245.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. C. Lindner,Finite embedding theorems for partial latin squares, quasigroups, and loops, J. Combinatorial Theory13 (1972), 339–345.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. C. Lindner,Finite partial cyclic triple systems can be finitely embedded, Algebra Universalis1 (1971), 93–96.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. S. Mendelsohn,Orthogonal Steiner systems, Aequationes Mathematicae5 (1970), 268–272.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. S. Mendelsohn,A natural generalization of Steiner triple systems, Proceedings of the Atlas Symposium on Computers in Number Theory (to appear).Google Scholar
  14. [14]
    C. Treash,The completion of finite incomplete Steiner triple systems with applications to loop theory, J. Combinatorial Theory10 (1971), 259–265.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1975

Authors and Affiliations

  • Robert Chaffer
    • 1
  • Maurice Eggen
    • 1
  • Richard St. Andre
    • 1
  • Douglas Smith
    • 1
  1. 1.Central Michigan UniversityMount PleasantUSA

Personalised recommendations