Advertisement

algebra universalis

, Volume 5, Issue 1, pp 257–262 | Cite as

Strong finite embeddability for classes of quasigroups

  • Robert Chaffer
  • Maurice Eggen
  • Richard St. Andre
  • Douglas Smith
Article

Keywords

Word Problem Distinct Element Triple System Algebra UNIV Combinatorial Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Cruse,On embedding incomplete latin squares, Journal of Combinatorial Theory (to appear).Google Scholar
  2. [2]
    T. Evans,Combinatorial universal algebra, Proceedings of a Conference on Combinatorics at Memphis State University, August 1972.Google Scholar
  3. [3]
    T. Evans,The word problem for abstract algebras, J. London Math. Society26 (1951), 64–71.MATHGoogle Scholar
  4. [4]
    T. Evans,Embeddability and the word problem, J. London Math. Society28 (1953), 76–80.MATHGoogle Scholar
  5. [5]
    T. Evans,Embedding incomplete latin squares, American Mathematical Monthly67 (1967), 958–961.CrossRefGoogle Scholar
  6. [6]
    T. Evans,Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Society (2)1 (1969), 399–403.MATHGoogle Scholar
  7. [7]
    T. Evans,Finitely presented loops, lattices, etc., are Hopfian, J. London Math. Society44 (1969), 551–552.MATHGoogle Scholar
  8. [8]
    A. A. Gvaramiya and M. M. Glukov,Solution of the basic algorithmic problems in some classes of quasigroups with identities, Sibirskii Mathematicheskii Zhurnal10 (1969), 297–317.MATHGoogle Scholar
  9. [9]
    C. C. Lindner,Embedding partial idempotent latin squares, J. Combinatorial Theory10 (1971), 240–245.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    C. C. Lindner,Finite embedding theorems for partial latin squares, quasigroups, and loops, J. Combinatorial Theory13 (1972), 339–345.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    C. C. Lindner,Finite partial cyclic triple systems can be finitely embedded, Algebra Universalis1 (1971), 93–96.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    N. S. Mendelsohn,Orthogonal Steiner systems, Aequationes Mathematicae5 (1970), 268–272.MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    N. S. Mendelsohn,A natural generalization of Steiner triple systems, Proceedings of the Atlas Symposium on Computers in Number Theory (to appear).Google Scholar
  14. [14]
    C. Treash,The completion of finite incomplete Steiner triple systems with applications to loop theory, J. Combinatorial Theory10 (1971), 259–265.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1975

Authors and Affiliations

  • Robert Chaffer
    • 1
  • Maurice Eggen
    • 1
  • Richard St. Andre
    • 1
  • Douglas Smith
    • 1
  1. 1.Central Michigan UniversityMount PleasantUSA

Personalised recommendations