, Volume 47, Issue 5, pp 319–327 | Cite as

Approximate determination of the dynamic stiffness coefficients of beams

  • George H. Sotiropoulos


Approximate frequency dependent functions are presented for the calculation of beam element dynamic stiffness influence coefficients, i.e. time dependent end forces and moments due to harmonic unit end displacements and rotations. The method proposed is placed between the “exact” and the “consistent mass” method trying to combine accuracy offered by the first with formulation's simplicity offered by the second.


Free Vibration Beam Element Dynamic Stiffness Frequency Function Dynamic Stiffness Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Es wird ein Näherungsverfahren für die Bestimmung der Elemente der dynamischen Steifigkeitsmatrizen von Stäben behandelt, d. h. von zeitabhängigen Querkräften und Biegemomenten, die infolge von Einheits-Verschiebungen und — Verdrehungen am Ende eines Stabes auftreten. Die vorliegende Methode liegt zwischen der „genauen” und der Methode der „äquivalenten Masse” und kombiniert die Genauigkeit der ersten mit der Einfachkeit der zweiten. *** DIRECT SUPPORT *** AX304180 00005


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Äkesson, B. Ä.: PFVIBAT — a computer program for plane frame vibration analysis by an exact method. Int. J. Num. Meth. Engng. 10 (1976) 1211–1231CrossRefGoogle Scholar
  2. 2.
    Archer, J. S.: Consistent mass matrix for distributed mass systems. J. Structural Div. ASCE 89 (1963) 161–178.Google Scholar
  3. 3.
    Cohen, E.; McCallion, H.: Improved deformation functions for the finite element analysis of beam systems. Int. J. Num. Meth. Engng. 1 (1969) 163–167.MATHCrossRefGoogle Scholar
  4. 4.
    Henshell, R. D.; Warburton, G. B.: Transmission of vibration in beam systems. Int. J. Num. Meth. Engng. 1 (1969) 47–66.CrossRefGoogle Scholar
  5. 5.
    Kolousek, V.: Dynamics in Engineering Structurs. London 1973Google Scholar
  6. 6.
    Mindlin, R. D.; Goodman, L. E.: Beam vibrations with time dependent boundary conditions. J. Appl. Mech. 17 (1950) 377–380.MATHMathSciNetGoogle Scholar
  7. 7.
    Neubert, V. H.; Hahn, H. T.; Hae Lee: Lumped parameter beam based on impedance methods. J. Eng. Mech. ASCE 96 (1970) 69–82Google Scholar
  8. 8.
    Przemieniecki, J. S.: Theory of matrix structural analysis. New York 1968Google Scholar
  9. 9.
    Sotiropoulos, G. H.: Stiffness solution for the dynamic analysis of rigid planar frames. Technical Chronicles (in Greek) No. 1 (1977)Google Scholar
  10. 10.
    Sotiropoulos, G. H.: Stiffness solution for the analysis of prismatic folded plate structures subjected to statical and dynamical loads. Doctoral Thesis, Thessaloniki 1974Google Scholar
  11. 11.
    Wang, C. K.: Computer methods in advanced structural analysis New York 1973Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • George H. Sotiropoulos
    • 1
  1. 1.Laboratory of Structural Analysis — Prof. Dr. G. NitsiotasAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations