Histochemistry and Cell Biology

, Volume 106, Issue 2, pp 167–192 | Cite as

Multiparameter microscopic analysis of nucleolar structure and ribosomal gene transcription

  • M. F. Trendelenburg
  • O. V. Zatsepina
  • T. Waschek
  • W. Schlegel
  • H. Tröster
  • D. Rudolph
  • G. Schmahl
  • H. Spring
Robert Feulgen Lecture 1996


A survey of novel microscopic approaches for structural and functional analysis of subnucleolar compartments will be presented. Research on nucleolar structure and function concentrates predominantly on two distinct types of nucleoli: (1) nucleoli present during the interphase of the cell cycle in somatic tissue culture cells and (2) nucleoli present in meiotic cells, e.g. oocytes of amphibians. These nucleoli are found during meiotic prophase of oogenesis and are functional during several months of the diplotene stage of oogenesis. A further characteristic is the fact that these nucleoli are extra-chromosomal, since they originate by selective ribosomal DNA (rDNA) amplification during the early pachytene stage of oogenesis. Miller-type chromatin spread preparations using transcriptionally active nucleoli, to a major part, contributed to our undertanding of the structural organization of polymerase I directed pre-rRNA transcription. Although the structural organization of the template-associated pre-rRNA transcript is known in some detail from chromatin spreads, relatively little is known about structural aspects of pre-rRNA processing. In order to investigate this intriguing question in more detail, we have developed a computer-based densitometry analysis of both template-associated and template-dissociated pre-rRNA transcripts in order to follow the structural modification of pre-rRNA transcripts during processing. Another line of experiments is devoted to the in situ structure of actively transcribing genes in the nucleolus. In order to bridge the gap between light microscopy and electron microscopy we started video-enhanced light microscopical analysis of actively transcribing genes. Although the dimensions of individual spread genes are critical for detection by optical microscopy, we succeeded in obtaining the first series of images of transcribing genes in their ‘native’ hydrated state. An additional promising type of microscopy is transmission X-ray microscopy. Recent progress in instrumentation as well as in sample preparation has allowed us to obtain the first images of density distribution within intact, fully hydrated nucleoli using amplitude-contrast and/or phase-contrast X-ray microscopy of non-contrasted, fully hydrated nucleoli at different states of transcriptional activity. Whereas the above mentioned investigations using video microscopy and X-ray microscopy are predominantly applicable to the analysis of amplified nucleoli in amphibian oocytes, which are characterized by an extremely high transcription rate of 80–90% of rDNA genes per individual nucleolus, structural analysis of the in situ arrangement of actively transcribing genes in somatic nucleoli as present in the interphase nucleus is far more difficult to perform, mainly due to the much lower number of simultaneously transcribed active genes per individual nucleolus. Visualization of actively transcribed gene clusters is approached by an integrated experimental assay using video microscopy, confocal laser scan microscopy, and antibodies against specific nucleolar proteins.


Nucleolar Organizer Region Lampbrush Chromosome Oocyte Nucleus Dense Fibrillar Component rDNA Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen RD (1985) New observations on cell architecture and dynamics by video-enhanced optical microscopy. Ann Rev Biophys Chem 14:265–290Google Scholar
  2. Allen RD, Allen NS (1983) Video-enhanced microscopy with a computer frame memory. J Microsc 129:3–17PubMedGoogle Scholar
  3. Amero SA, Raychaudhuri G, Cass CL, van Venrooij WJ, Habets WJ, Krainer AR, Beyer AL (1992) Independent deposition of heterogeneous nuclear ribonucleoproteins and small nuclear ribonucleoprotein particles at sites of transcription. Proc Natl Acad Sci USA 89:8409–8413PubMedGoogle Scholar
  4. Anderson DM, Smith LD (1978) Patterns of synthesis and accumulation of heterogeneous RNA in lampbrush stage oocytes ofXenopus laevis (Daudin): Dev Biol 67:274–285PubMedGoogle Scholar
  5. Bachellerie JP, Michot B, Nicoloso M, Balakin A, Ni J, Fournier MJ (1995) Antisense snoRNAs: a family of nucleolar RNAs with long complementarities to rRNA. Trends Biochem Sci 20:261–264PubMedGoogle Scholar
  6. Bakken AH, Morgan G, Sollner-Webb B, Roan J, Busby S, Reeder RH (1982) Mapping of transcription initiation and termination signals onXenopus laevis ribosomal DNA. Proc Natl Acad Sci USA 79:56–60PubMedGoogle Scholar
  7. Bauer H (1933) Die wachsenden Oocytenkerne einiger Insekten in ihrem Verhalten zur Nucklealfärbung. Z. Zellforsch 18:254–298Google Scholar
  8. Bazett-Jones DP, Leblanc B, Herfort M, Moss T (1994) Shortrange DNA looping by theXenopus HMG-box transcription factor, xUBF. Science 264:1134–1137PubMedGoogle Scholar
  9. Beermann W (1960) Der Nukleolus als lebenswichtiger Bestandteil des Zellkerns. Chromosoma 11:263–296PubMedGoogle Scholar
  10. Beyer AL (1983) Ultrastructural analysis of the ribonucleoprotein structure of nascent hn RNA. Mol Biol Rep 9:49–58PubMedGoogle Scholar
  11. Beyer AL, Osheim YN (1988) Splice selection, rate of splicing and alternative splicing on nascent transcripts. Genes Dev 2:745–756Google Scholar
  12. Beyer AL, McKnight SL, Miller OL Jr (1979) Transcriptional units in eukaryotic chromosomes. In: Taylor JH (ed) Chromosome structure (Molecular genetics, vol III) Academic Press, Orlando, pp 117–175Google Scholar
  13. Binder MS, Roth J, Renaud M, Gehring WJ (1986) In situ hybridization at the electron microscope level: localization of transcripts on ultrathin sections of lowicryl K4M-embedded tissue using biotinylate probes and protein A-gold complexes. J Cell Biol 102:1646–1653PubMedGoogle Scholar
  14. Boseley P, Moss T, Mächler M, Portmann R, Birnstiel M (1979) Sequence organization of the spacer DNA in a ribosomal gene unit ofXenopus laevis. Cell 17:19–31PubMedGoogle Scholar
  15. Brachet J (1940) La localisation de l'acide thymonucléique pendant l'oogénèse et la maturation chez les Amphibiens. Arch Biol 51:151–165Google Scholar
  16. Brown DD, Gurdon JB (1964) Absence of ribosomal RNA synthesis in the anucleolate mutant ofXenopus laevis. Proc Natl Acad Sci USA 51:139–146PubMedGoogle Scholar
  17. Busch H, Smetana K (1970) The nucleolus. Academic Press, New YorkGoogle Scholar
  18. Callan HG (1986) Lampbrush chromosomes. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Caspersson T, Schultz J (1940) Ribonucleic acids in both nucleus and cytoplasm and the function of the nucleolus. Proc Natl Acad Sci USA 26:507–515PubMedGoogle Scholar
  20. Davidson EH (1986) Gene activity in early development. Academic Press, OrlandoGoogle Scholar
  21. De Brabander M, Geerts H, Nuyens R, Nuydens R, Cornelissen F (1993) Nanovid microscopy: imaging and quantification of colloidal gold labels in living cells. In: Shotton D (ed) Electronic light microscopy, Wiley-Liss, New York, pp 141–155Google Scholar
  22. Derenzini M, Thiry M, Goessens G (1990) Ultrastructural cytochemistry of the mammalian cell nucleolus. J Histochem Cytochem 38:1237–1256PubMedGoogle Scholar
  23. Edström JE (1960) Extraction, hydrolysis, and electrophoretic analysis of ribonucleic acid from microscopic tissue units (microphoresis). J Biophys Biochem Cytol 8:39–46PubMedGoogle Scholar
  24. Edström JE, Gall JG (1963) The base composition of ribonucleic acid in lampbrush chromosomes, nucleoli, nuclear sap, and cytoplasm ofTriturus oocytes. J Cell Biol. 19:279–284Google Scholar
  25. Elsdale TR, Fischberg M, Smith S (1958) A mutation that reduces nucleolar number inXenopus laevis. Exp Cell Res 14:642–643PubMedGoogle Scholar
  26. Fakan S, Puvion E (1980) Ultrastructural visualization of nucleolar and extranucleolar RNA synthesis and distribution. Int Rev Cytol 65:255–299PubMedGoogle Scholar
  27. Fakan S, Hernandez-Verdun D (1986) The nucleolus and the nucleolar organizer regions. Biol Cell 56:189–206PubMedGoogle Scholar
  28. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Hoppe Seyler's Z Physiol Chem 135:203–248Google Scholar
  29. Flemming W (1882) Zellsubstanz, Kern und Zellteilung. Vogel. LeipzigGoogle Scholar
  30. Fragapane P, Prislei S, Michienzi A, Caffarelli E, Bozzoni I (1993) A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by precessing of the pre-in RNA. EMBO J 12:2921–2928PubMedGoogle Scholar
  31. Franke WW, Scheer U, Trendelenburg MF, Spring H, Zentgraf H (1976a) Absence of nucleosomes in transcriptionally active chromatin. Cytobiologie 13:401–434Google Scholar
  32. Franke WW, Scheer U, Spring H, Trendelenburg MF, Krohne G (1976b) Morphology of transcriptional units of rDNA. Evidence for transcription in apparent spacer intercepts and cleavages in the elongating nascent. RNA Exp Cell Res 100:233–244Google Scholar
  33. Franke WW, Scheer U, Trendelenburg MF, Zentgraf H, Spring H (1978) Morphology of transcriptionally active chromatin. Cold Spring Harbor Symp quant Biol 42:755–772PubMedGoogle Scholar
  34. Franke WW, Scheer U, Spring H, Trendelenburg MF, Zentgraf H (1979) Organization of nucleolar chromatin. In: Busch H (ed) Chromatin, part D (The cell nucleus, vol. VII). Academic Press, Orlando, pp 49–95Google Scholar
  35. Franke WW, Kleinschmidt JA, Spring H, Krohne G, Grund C, Trendelenburg MF, Stoehr M, Scheer U (1981) A nucleolar selection of filaments demonstrate in amplified nucleoli ofXenopus laevis. J Cell Biol 90:289–299PubMedGoogle Scholar
  36. Gall JG (1992) Organelle assembly and function in the amphibian germinal vesicle. Adv Dev Biochem 1:1–29Google Scholar
  37. Garcia-Blanco MA, Miller DD, Sheetz MP (1995) Nuclear spreads I. Visualization of bipartide ribosomal DNA domains. J Cell Biol 128:15–27PubMedGoogle Scholar
  38. Gerbi SA, Savino R, Stebbins-Boaz B, Jeppessen C, Rivera-Leon R (1990) A role for U3 small nuclear ribonucleoprotein in the nucleolus? In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The ribosome—structure, function and evolution. American Society for Microbiology, Washington DC, pp 452–469Google Scholar
  39. Gilbert N, Lucas L, Klein C, Menager M, Bonnet N, Ploton D (1995) Three-dimensional co-localization of RNA polymerase 1 and DNA during interphase and mitosis by confocal microscopy. J Cell Sci 108:115–125PubMedGoogle Scholar
  40. Goessens G, Lepoint A (1979) The nucleolus organizing regions (NORs): recent data and hypothesis. Biol Cell 35:211–220Google Scholar
  41. Gundlach H (1979) Anwendungsmöglichkeiten der Interfere-nzkontrast-Mikroskopie. In: Witte S, Ruch F (Eds) Moderne Untersuchungsmethoden in der Zytologie. Witzstrock. Baden-Baden, S 27–35Google Scholar
  42. Gundlach H (1994) Phase contrast and differential interference constrast imaging techniques and applications. SPIE Proc 1846:126–139Google Scholar
  43. Gundlach H, Trendelenburg MF (1981) Identification and selective micropreparation of live nuclear components with the Zeiss IM 35 Inverted Microscope. Zeiss Inform 25:36–40Google Scholar
  44. Gurdon JB, Wakefield L (1986) Microinjection of amphibian oocytes and eggs for the analysis of transcription. In: Celis JE, Graessmann A, Loyter A (eds) Microinjection and organelle transplantation techniques. Academic Press, London, pp 271–299Google Scholar
  45. Guttmann P, Schneider G, Robert-Nicoud M, Niemann B, Rudolph D, Thieme J, Jovin TM, Schmahl G (1992) X-ray microscopy investigations of polytene chromosomes isolated from salivary glands ofChironomus thummi larvae. In: Michette AG, Morrison GR, Buckley CJ (eds) X-ray microscopy-III (Springer series in optical sciences, vol 67). Springer, Berlin Heidelberg New York, pp 350–354Google Scholar
  46. Haaf T, Ward DC (1996) Inhibition of RNA polymerase II transcription causes chromatin decondensation, loss of nucleolar structure, and dispersion of chromosomal domains. Exp Cell Res 224:163–173PubMedGoogle Scholar
  47. Haaf T, Hayman DL, Schmid M (1991) Quantitative determination of rRNA transcription units in vertebrate cells. Exp Cell Res 193:78–86PubMedGoogle Scholar
  48. Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer, Vienna New YorkGoogle Scholar
  49. Heitz E (1931) Nukleolen und Chromosomen in der Gattung Vicial. Planta 2:775–844Google Scholar
  50. Hernandez-Verdun D (1991) The nucleolus today. J Cell Sci 99:465–471PubMedGoogle Scholar
  51. Hofmann A, Laier A, Trendelenburg MF (1985) Gen-Injektion und Transkript-Analyse in der Xenopus-Oocyte. In: Blin N, Trendelenburg MF, Schmidt ER (eds) Molekular- und Zellbiologie. Aktuelle Thermen. Springer, Berlin Heidelberg New York, pp 144–158Google Scholar
  52. Hozak P, Cook PR, Schäfer C, Mosgöller W, Wachtler F (1994) Site of transcription of ribosomal RNA and intranucleolar structure in Hela cells. J Cell Sci 107:639–648PubMedGoogle Scholar
  53. Inoué S (1986) Video microscopy. Plenum Press, New YorkGoogle Scholar
  54. Jordan EG (1991) Interpretating nucleolar structure: where are the transcribing genes? J Cell Science 98:437–442PubMedGoogle Scholar
  55. Jordan P, Mannervik M, Tora L, Carmo-Fonseca M (1996) In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J Cell Biol 133:225–234PubMedGoogle Scholar
  56. Kiseleva E, Wurtz T, Visa N, Daneholt B (1994) Assembly and disassembly of spliceosomes along a specific pre-messenger RNP fiber. EMBO J 13:6052–6061PubMedGoogle Scholar
  57. Labhart P, Reeder RH (1986) Characterization of three sites of RNA 3′ end formation in theXenopus ribosomal gene spacer. Cell 45:431–443PubMedGoogle Scholar
  58. Labhart P, Reeder RH (1987a) DNA sequences for typical ribosomal gene spacers fromXenopus laevis andXenopus borealis. Nucleic Acids Res 15:3623–3624PubMedGoogle Scholar
  59. Labhart P, Reeder RH (1987b) Heat shock stabilizes highly unstable transcripts of theXenopus ribosomal gene spacer. Proc Natl Acad Sci USA 84:56–60PubMedGoogle Scholar
  60. Laskey RA, Gurdon JB, Trendelenburg MF (1979) Accumulation of material involved in rapid chromosomal replication in early amphibian development. In: Newth D, Balls M (eds) Maternal effects in development. Cambridge University Press, Cambridge, UK, pp 65–80Google Scholar
  61. Lischwe MA, Richards RL, Busch RR, Busch H (1981) Localization of phosphoprotein C23 to nucleolar structures and to the nucleolar organizer regions. Exp Cell Res 136:101–109PubMedGoogle Scholar
  62. Macgregor HC (1972) The nucleolus and its genes in amphibian oogenesis. Biol Rev 47:177–210PubMedGoogle Scholar
  63. Martin K, Osheim YN, Beyer AL, Miller OL Jr (1980) Visualization of transcriptional activity duringXenopus laevis oogenesis. In: McKinnell RG, Di Berardino MA, Blumenfeld M, Bergad RD (eds) Differentiation and neoplasia. (Results and Problems in Cell differentiation, vol. 11) Springer, Berlin Heidelberg New York, pp 35–44Google Scholar
  64. Matera AG, Tycowski KT, Steitz JA, Ward DC (1994) Organization of small ribonucleoproteins (sno RNPs) by fluorescence in situ hybridization and immunocytochemistry. Mol Biol Cell 5:1289–1299PubMedGoogle Scholar
  65. Matera AG, Frey MR, Margelot K, Wolin SL (1995) A perinucleolar compartment contains several RNA polymerase III trans-scripts as well as the polypyrimidine tract-binding protein, hn RNPI. J Cell Biol 129:1181–1193PubMedGoogle Scholar
  66. McClintock B (1934) The relation of a particular chromosomal element to the development of the nucleoli inZea mays. Z Zellforsch Mikrosc Anat 21:294–328Google Scholar
  67. McMaster-Kaye R, Taylor JH (1958) Evidence for two metabolically distinct types of ribonucleic acid in chromatin and nucleoli. J Biophys Biochem Cytol 4:5–11.PubMedGoogle Scholar
  68. Meissner B, Trendelenburg MF, Hofmann A (1990) Parameters ofXenopus rDNA transcription in microinjected oocytes. In: Harris JR, Zbarsky IB (eds) Nuclear structure and function. Plenum Press, New York, pp 383–388Google Scholar
  69. Meissner B, Hofmann A, Steinbeisser H, Spring H, Miller OL Jr, Trendelenburg MF (1991) Faithful in vivo transcription termination ofXenopus laevis rDNA. Correlation of electron micro scopic spread preparations with S1 transcript analysis. Chromosoma 101:222–230PubMedGoogle Scholar
  70. Melton DA, Cortese R, De Robertis EM, Trendelenburg MF, Gurdon JB (1980) Gene injections in amphibian oocytes. In: McKinnell RG, Di Dernardino MA, Blumenfeld M, Bergad RD (eds) Differentiation and neoplasia (Results and problems in cell differentiation, vol 11). Springer, Berlin Heidelberg New York, pp 8–14Google Scholar
  71. Miller OL Jr (1981) The nucleolus, chromosomes and visualization of genetic activity. J Cell Biol 91:15s-27sPubMedGoogle Scholar
  72. Miller OL Jr, Beatty BR (1969a) Visualization of nucleolar genes. Science 164:955–957PubMedGoogle Scholar
  73. Mitchell ELD, Hill RD (1987) The activation of amplified ribosomal RNA genes in the oocytes ofXenopus laevis: an electron microscope analysis. Hereditas 107:219–227PubMedGoogle Scholar
  74. Mougey EB, O'Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1620PubMedGoogle Scholar
  75. Montag M, Kukulies J, Jörgens R, Gundlach H, Trendelenburg MF, Spring H (1991) Working with the confocal scanning UV-laser microscope: specific DNA localization at high sensitivity and multi-parameter fluorescence. J Microsc 163:201–210PubMedGoogle Scholar
  76. Montgomery TH (1898) Comparative cytological studies, with special regard to the morphology of the nucleolus. J Morphol 15:265–564Google Scholar
  77. Moreno Diaz de la Espina S, Franke WW, Krohne G, Trendelenburg MF, Grund C, Scheer U (1982) Medusoid fibril bodies: a novel type of nuclear filament of diameter 8 to 12 nm with periodic ultrastructure demonstrated in oocytes ofXenopus laevis. Eur J Cell Biol 27:141–150PubMedGoogle Scholar
  78. Moss T, Stefanovsky VY (1995) Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog Nucleic Acid Res Mol Biol 50:25–65PubMedGoogle Scholar
  79. O'Mahony DJ, Xie WQ, Smith SD, Singer HA, Rothblum LI (1992) Differential phosphorylation and localization of the transcription factor UBF in vivo in response to serum deprivation. J Biol Chem 267:35–38PubMedGoogle Scholar
  80. O'Reilly MM, French SL, Sikes ML, Miller OL Jr (1994) Ultrastructural in situ hybridization to nascent transcripts of highly transcribed rRNA genes in chromatin spreads. Chromosoma 103:122–128PubMedGoogle Scholar
  81. Osheim YN, Beyer AL (1985) Nascent ribonucleoprotein structure of polymerase I, II and III gene transcripts. In: Smuckler EA, Clawson A (eds) Nuclear envelope structure and RNA maturation. Liss, New York, pp 277–295Google Scholar
  82. Painter TS, Taylor AN (1942) Nucleic acid storage in the toad's egg. Proc Natl Acad Sci USA 28:311–317PubMedGoogle Scholar
  83. Palade GE (1955) A small particulate compartment of the cytoplasm. J Biophys Biochem Cytol 1:59–68PubMedGoogle Scholar
  84. Perochon-Dorisse J, Chetouani F, Aurel S, Iscolo N, Michot B (1995) RNA-d 2: a computer program for editing and display of RNA secondary structures. CABIOS 11:101–109PubMedGoogle Scholar
  85. Perry RP, Hell A, Errera M (1961) The role of the nucleolus in ribonucleic acid and protein synthesis. I. Incorporation of cytidine into normal and nucleolar inactivated hela cells. Biochim Biophys Acta 49:47–57PubMedGoogle Scholar
  86. Porter KR (1954) J Histochem Cytochem 2:346–355PubMedGoogle Scholar
  87. Puvion-Dutilleul F, Bachellerie JP, Puvion E (1991) Nucleolar organization of HeLa cells as studied by in situ hybridization. Chromosoma 100:395–409PubMedGoogle Scholar
  88. Raska I, Dundr M, Koberna K, Melcák I, Risueno MC, Török I (1995) Does the synthesis of ribosomal RNA take place within nucleolar fibrillar centres or dense fibrillar components? A critical appraisal. J Struct Biol 114:1–22PubMedGoogle Scholar
  89. Rebbun L I (1986) Robert Day Allen (1927–1986): an appreciation. Cell Motil Cytoskeleton 6:149–155Google Scholar
  90. Reeder RH (1990) rRNA synthesis in the nucleolus. Trends Genet 6:390–395PubMedGoogle Scholar
  91. Reeder RH, Labhart P, McStay B (1987) Processing and termination of RNA polymerase I transcripts. Bioessays 6:108–112PubMedGoogle Scholar
  92. Reeder RH, Pikaard CS, McStay B (1995) UBF, an architectural element for RNA polymerase I promoters In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, vol 9. Springer, Berlin Heidelberg New York, pp 251–263Google Scholar
  93. Richter K, Tröster H, Haking A, Schulz P, Oudet P, Witz J, Probst W, Spiess E, Spring H, Trendelenburg MF (1996) Phosphorous mapping of isolated viruses by energy spectroscopic imaging (ESI). An experimental approach to discriminate mass effects from the element signal. In: Proceedings, Microscopy and Microanalysis '96, Minneapolis, USA (in press)Google Scholar
  94. Risueño MC, Medina FX (1986) The nucleolar structure in plant cells. Rev Biol Cell 7:1–163Google Scholar
  95. Ritossa F, Spiegelman S (1965) Localization of DNA complementary to ribosomal RNA in the nucleolus organizer region ofDrosophila melanogaster. Genetics 53:737–745Google Scholar
  96. Rose KM, Szopa J, Han F-s, Cheng Y-C, Richter A, Scheer U (1988) Association of DNA topoisomerase I and RNA polymerase I: a possible role for topoisomerase I in ribosomal gene transcription. Chromosoma 96:411–415PubMedGoogle Scholar
  97. Roth J, Bendayan M, and Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1947–1981Google Scholar
  98. Roth J, Bendayan M, Carlemalm E, Villinger W, Garavito M (1981) Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem 29:663–671PubMedGoogle Scholar
  99. Roussel P, André C, Masson C, Géraud G, Hernandez-Verdun D (1993) Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104:327–337PubMedGoogle Scholar
  100. Roussel P, André C, Comai L, Hernandez-Verdun D (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol 133:235–246PubMedGoogle Scholar
  101. Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12:14–21PubMedGoogle Scholar
  102. Scheer U, Dabauvalle MC (1985) Functional organization of the amphibian oocyte nucleus. In: Browder LW (ed) Oogenesis. (Developmental biology, a comprehensive synthesis, vol 1). Plenum Press, New York, pp 385–430Google Scholar
  103. Scheer U, Rose KM (1984) Localization of RNA polymerase in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci USA 81:1431–1435PubMedGoogle Scholar
  104. Scheer U, Weisenberger D (1994) The nucleulus. Curr Opin Cell Biol 6:354–359PubMedGoogle Scholar
  105. Scheer U, Trendelenburg MF, Franke WW (1976) Regulation of transcription of genes of ribosomal RNA during amphibian oogenesis. A biochemical and morphological study. J Cell Biol 69:465–489PubMedGoogle Scholar
  106. Scheer U, Spring H, Trendelenburg MF (1979) Organization of transcriptionally active chromatin in lampbrush chromosome loops. In: Busch H (ed) The cell nucleus, vol VII. Academic Press, New York, pp 3–47Google Scholar
  107. Scheer U, Kleinschmidt JA, Franke WW (1982) Transcriptional and skeletal elements in nucleoli of amphibian oocytes. In: Jordan EG, Cullis CA (eds) The nucleolus. Cambridge University Press, Cambridge, UK, pp 25–42Google Scholar
  108. Scheer U, Messner K, Hazan R, Raska R, Raska I, Hansmann P, Falk H, Spiess E, Franke WW (1987) High sensitivity immunolocalization of double and single-stranded DNA by a monoclonal antibody. Eur J Cell Biol 43:358–371PubMedGoogle Scholar
  109. Schmahl G, Rudolph D (1969) Lichtstarke Zonenplatten als abbildende Optiken für Röntgenstrahlen. Optik 29:577–588Google Scholar
  110. Schmahl G, Rudolph D, Niemann B, Guttmann P, Thieme J, Schneider G (1996) Röntgenmikroskopie. Naturwissenschaften 83:61–70PubMedGoogle Scholar
  111. Schnapp G, Santori F, Carles C, Riva M, Grummt I (1994) The HMG box-containing nucleolar transcription factor UBF interacts with a specific subunit of RNA polymerase I. EMBO J 13:190–199PubMedGoogle Scholar
  112. Shaw PJ, Highett MI, Beven AF, Jordan EG (1995) The nucleolar architecture of polymerase I transcription and processing. EMBO J 14:2896–2906PubMedGoogle Scholar
  113. Shotton DM (ed) (1993) Electronic light microscopy: the principals and practice of intensified fluorescence, video-enhanced contrast and confocal scanning optical microscopy. Wiley-Liss, New YorkGoogle Scholar
  114. Shotton DM (1995) Electronic light microscopy: present capabilities and future prospects. Histochem Cell Biol 104:97–137PubMedGoogle Scholar
  115. Smetana K, Busch H (1974) The nucleolus and nucleolar DNA. In: Busch H (ed) The cell nucleus, vol 1. Academic Press, New York, pp:75–147Google Scholar
  116. Sollner-Webb B, Reeder RH (1979) The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription inX. laevis. Cell 18:485PubMedGoogle Scholar
  117. Sommerville J (1977) Gene activity in the lampbrush chromosomes of amphibian oocytes. In Rev Biochem 15:79–156Google Scholar
  118. Sommerville J (1986) Nucleolar structure and ribosome biogenesis. Trends Biochem Sci 11:438–442Google Scholar
  119. Spring H, Trendelenburg MF (1990) Towards light microscopic imaging of the hydrated ‘native’ ribosomal RNA genes. A combined video microscopic and transmission electron microscopic analysis. J Microsc 158:323–333PubMedGoogle Scholar
  120. Spring H, Trendelenburg MF, Montag M (1988) DNA-fluorescence of mammalian intra-nucleolar chromatin detected by confocal laser scanning microscopy (CLSM). Biol Cell 64:371–374PubMedGoogle Scholar
  121. Spring H, Guttmann P, Rudolph D, Schneider G, Schmahl G, Trendelenburg MF (1995) Applications of X-ray microscopy with hydrated specimens in biomedical research. Zool Stud 34 (Suppl I): pp 214–217Google Scholar
  122. Spring H, Meissner B, Fischer R, Mouzaki D, Trendelenburg MF (1996) Spatial arrangement of intra-nucleolar rDNA chromatin in amplifiedXenopus oocyte nucleoli: structural changes precede the onset of rDNA transcription. Int J Dev Biol 40:263–272PubMedGoogle Scholar
  123. Tautz D, Dover GA (1986) Transcription of the tandem array of ribosomal DNA inDrosophila melanogaster does not terminate at any fixed point. EMBO J 4:1267–1273Google Scholar
  124. Thiébaud CH (1979) The intra-nucleolar localization of amplified rDNA inXenopus laevis oocytes. Chromosoma 73:29–36PubMedGoogle Scholar
  125. Thiry M (1993) Ultrastructural distribution of DNA and RNA within the nucleolus of human Sertoli cells as seen by molecular immunocytochemistry. J Cell Sci 105:33–39PubMedGoogle Scholar
  126. Thiry M (1995) New approaches to in situ detection of nucleic acids. Histochem Cell Biol 104:81–95PubMedGoogle Scholar
  127. Thiry M, Goessens G (1992) Where, within the nucleolus, are the rRNA genes located?. Exp Cell Res 200:1–4PubMedGoogle Scholar
  128. Thomas C, Schram A (1977) Correlation between the condensation state of rDNA and rRNA synthesis duringXenopus laevis oogenesis. Biol Cell 30:49–54Google Scholar
  129. Trendelenburg MF (1981) Initiations of transcription at distinct promotor sites in spacer regions between pre-rRNA genes in oocytes ofXenopus laevis: an electron microscopic analysis. Biol Cell 42:1–12Google Scholar
  130. Trendelenburg MF (1982a) Visualization of in vivo transcription patterns inXenopus rDNA spacer chromatin. Prog Clin Biol Res 84A:199–210Google Scholar
  131. Trendelenburg MF (1982b) Chromatin structure ofXenopus rDNA transcription termination sites. Chromosoma 86:703–715PubMedGoogle Scholar
  132. Trendelenburg MF (1983) Progress in visualization of eukaryotic gene transcription. Hum Genet 63:197–215PubMedGoogle Scholar
  133. Trendelenburg MF, Gurdon JB (1978) Transcription of clonedXenopus ribosomal genes visualized after injection into oocyte nuclei. Nature 276:292–294PubMedGoogle Scholar
  134. Trendelenburg MF, McKinnell RG (1979) Transcriptionally active and inactive regions of nucleolar chromatin in amplified nucleoli of fully grown oocytes of hibernating frogs,Rana pipiens (Amphibia, Anura). A quantitative electron microscopic study. Differentiation 15:73–95PubMedGoogle Scholar
  135. Trendelenburg MF, Puvion-Dutilleul F (1987) Visualizing active genes. In: Sommerville J, Scheer U (eds) Electron microscopy in molecular biology. IRL Press, Oxford, pp 101–146Google Scholar
  136. Trendelenburg MF, Scheer U, Franke WW (1973) Structural organization of the transcription of ribosomal DNA in oocytes of the house cricket. Nat New Biol 245:167–170PubMedGoogle Scholar
  137. Trendelenburg MF, Scheer U, Zentgraf H, Franke WW (1976) Heterogeneity of spacer lengths in circles of amplified ribosomal DNA of two insect species.Dytiscus marginalis andAcheta domesticus. J Mol Biol 108:453–470PubMedGoogle Scholar
  138. Trendelenburg MF, Franke WW, Scheer U (1977) Frequencies of circular units of nucleolar DNA in oocytes of two insects,Acheta domesticus andDytiscus marginalis, and changes of nucleolar morphology during oogenesis. Differentiation 7:133–158PubMedGoogle Scholar
  139. Trendelenburg MF, Zentgraf H, Franke WW, Gurdon JB (1978) Transcription patterns of amplified Dytiscus genes coding for ribosomal RNA after injection intoXenopus oocyte nuclei. Proc Natl Acad Sci USA 75:3791–3795PubMedGoogle Scholar
  140. Trendelenburg MF, Mathis D, Oudet P (1980) Transcription units of chicken ovalbumin genes observed after injection of clones complete genes intoXenopus oocyte nuclei. Proc Natl Acad Sci USA 77:5984–5989PubMedGoogle Scholar
  141. Trendelenburg MF, Allen RD, Gundlach H, Meissner B, Tröster H, Spring H (1986) Recent improvements in microscopy towards analysis of transcriptionally active genes and translocation of RNP-complexes In: Peters R, Trendelenburg MF (eds) Nucleocytoplasmic transport. Springer, Berlin Heidelberg New York, pp 95–112Google Scholar
  142. Trendelenburg MF, Meissner B, Tröster H, Berger S, Spring H (1988) Direct visualization of intranuclear lampbrush chromosome gene domains using video microscopy. Cell Biol Int Rep 12:737–763PubMedGoogle Scholar
  143. Trendelenburg MF, Waschek T, Schlegel W, Zatsepina OV, Spring H (1994) Chromatin of actively transcribing genes: an integrated view on nucleolar structures and functions. Int Congr Electron Microsc (Paris) 13:433–435Google Scholar
  144. Tröster H, Spring H, Meissner B, Schultz P, Oudet P, Trendelenburg MF (1985) Structural organization of an active, chromosomal nucleolar organizer region (NOR) identified by light microscopy and subsequent TEM and STEM electron microscopy. Chromosoma 91:151–163PubMedGoogle Scholar
  145. Tröster H, Edstöm JE, Trendelenburg MF, Hofmann A (1990) Structural organization ofAcheta rDNA. Evidence for differential amplification of soma and germ-line specific rDNA sequences. J Mol Biol 216: 533–543PubMedGoogle Scholar
  146. Van Gansen P, Schram A (1972) Evolution of the nucleoli during oogenesis inXenopus laevis studied by electron microscopy. J Cell Sci 10: 339–367PubMedGoogle Scholar
  147. Van Gansen P, Thomas C, Schram A (1976) Nucleolar activity and RNA metabolism in previtellogenic and vitellogenic oocytes ofXenopus laevis. A biochemical and autoradiographical light and EM study. Exp Cell Res 98:111–119PubMedGoogle Scholar
  148. Voit R, Schnapp A, Kuhn A, Rosenbauer H, Hirschmann P, Stunnenberg H, Grummt I (1992) The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C-terminal hyperacidic tail which is essential for transactivation EMBO J 11:2211–2218PubMedGoogle Scholar
  149. Voit R, Kuhn A, Sander EE, Grummt I (1995) Activation of mammalian ribosomal gene transcription requires phosphorylation of the nucleolar transcription factor UBF. Nucleic Acids Res 23:2593–2599PubMedGoogle Scholar
  150. Wachtler F, Stahl A (1993) The nucleolus: a structural and functional interpretation. Micron 24:473–505Google Scholar
  151. Wallace H, Birnstiel ML (1966) Ribosomal cistrons and the nucleolar organizer. Biochim Biophys Acta 114:296–310PubMedGoogle Scholar
  152. Warner JR (1990) The nucleolus and ribosome formation. Curr Opin Cell Biol 2:521–527PubMedGoogle Scholar
  153. Waschek T, Schlegel W, Trendelenburg MF (1994) Hochauflösende Densitometrie und interaktive digitale Bildanalyse zur molekularen Charakterisierung primärer rRNA Transkripte. In: Pöppl SJ, Lipinski H-G, Mansky T (eds) Medizinische Informatik: ein Teil Arzt-unterstützender Technologie. MMV Medizin. Munich, pp 250–253Google Scholar
  154. Weisenberger D, Scheer U (1995) A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitotis. J Cell Biol 129:561–575PubMedGoogle Scholar
  155. Williams MA, Trendelenburg MF, Franke WW (1981) Patterns of transcriptional activity of nucleolar genes during progesterone-induced maturation of oocytes ofXenopus laevis. Differentiation 20:36–44PubMedGoogle Scholar
  156. Zatsepina OV, Voit R, Grummt I, Spring H, Semenov MV, Trendelenburg MF (1993) The RNA-polymerase I-specific transcription initiation factor UBF is associated with transcriptionally active and inactive ribosomal genes. Chromosoma 102:599–611PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • M. F. Trendelenburg
    • 1
  • O. V. Zatsepina
    • 2
  • T. Waschek
    • 4
  • W. Schlegel
    • 4
  • H. Tröster
    • 1
  • D. Rudolph
    • 3
  • G. Schmahl
    • 3
  • H. Spring
    • 1
  1. 1.Biomedical Structure Analysis (0195)German Cancer Research Centre (DKFZ)HeidelbergGermany
  2. 2.A.N. Belozersky Institute of Physics, Chemistry and BiologyMoscow State UniversityMoscowRussia
  3. 3.Institute of X-Ray PhysicsUniversity of GöttingenGöttingenGermany
  4. 4.Medical Physics (0525) German Cancer Research CentreHeidelbergGermany

Personalised recommendations