Skip to main content

Advertisement

Log in

Brain necrosis after permanent low-activity iodine-125 implants: case report and review of toxicity from focal radiation

  • Case Report
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

Focal irradiation has emerged as a useful modality in the management of malignant brain tumors. Its main limitation is radiation necrosis. We report on the radiation dose distribution in the cerebellum of a patient who developed imaging and autopsy diagnosis of radiation necrosis after permanent iodine-125 implants for a solitary osseous plasmacytoma of her left occipital condyle. A 55-year-old woman initially presented with neck and occipital pain and a lytic lesion of her left occipital condyle. A cytological diagnosis of solitary osseous plasmacytoma was made by transpharyngeal needle biopsy. After an initial course of external beam radiation, the patient required further treatment with systemic chemotherapy 21 months later for clinical and radiographic progression of her disease. She ultimately required subtotal surgical resection of an anaplastic plasmacytoma with intracranial extension. Permanent low-activity iodine-125 seeds were implanted in the tumor cavity. Satisfactory local control was achieved. However, clinical and imaging signs of radiation damage appeared 28 months after iodine-125 seed implantation. Progressive systemic myeloma led to her death 11 years after presentation and 9 years after seed implantation. Radiation dose distribution is described, with a discussion of toxicity from focal radiation dose escalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bampoe J, Glen J, Mackenzie I, et al. (1997) Effect of implant dose/ volume and surgical resection on survival in a rat glioma brachytherapy model: implications for brain tumor therapy. Neurosurgery 41:1374–1384

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein M, Cabantog A, Laperriere N, et al (1995) Brachytherapy for recurrent single brain metastasis. Can J Neurol Sci 22:13–16

    PubMed  CAS  Google Scholar 

  3. Bernstein M, Laperriere N, Leung P, et al (1990) Interstitial brachytherapy for malignant brain tumors: preliminary results. Neurosurgery 26:371–380

    Article  PubMed  CAS  Google Scholar 

  4. Halligan JB, Stelzer KJ, Rostomily RC, et al (1996) Operation and permanent low activity125I brachytherapy for recurrent high-grade astrocytomas. Int J Radiat Oncol Biol Phys 35:541–547

    Article  PubMed  CAS  Google Scholar 

  5. Laperriere NJ, Leung PMK, McKenzie S, et al (1998) Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 41:1005–1011

    Article  PubMed  CAS  Google Scholar 

  6. Schulder M, MclBlack P, Shrieve DC, et al (1997) Permanent lowactivity iodine-125 implants for cerebral metastases. J Neurooncol 33:213–221

    Article  PubMed  CAS  Google Scholar 

  7. Selker RG, Shapiro WR, Green S, et al (1995) A randomized trial of interstitial radiotherapy (IRT) boost for the treatment of newly diagnosed malignant glioma (glioblastoma multiforme, anaplastic astrocytoma, anaplastic oligodendroglioma, malignant mixed glioma): BTCG study 87-01. Neurosurgery 37:573 (Abstract)

    Google Scholar 

  8. Zamorano L, Yakar D, Dujovny M, et al (1992) Permanent iodine-125 implant and external beam radiation therapy for the treatment of malignant brain tumors. Stereotact Funct Neurosurg 59:183–192

    PubMed  CAS  Google Scholar 

  9. Bleehen NM, Stenning SP (1991) A medical research council trial of two radiotherapy does s in the treatment of grades 3 and 4 astrocytoma. Br J Cancer 64:769–774

    PubMed  CAS  Google Scholar 

  10. McDermott MW, Sneed PK, Gutin PH (1998) Interstitial brachytherapy for malignant brain tumors. Semin Surg Oncol 14:79–87

    Article  PubMed  CAS  Google Scholar 

  11. Bampoe J, Bernstein M (1998) Advances in radiotherapy of brain tumors: radiobiology versus reality. J Clin Neurosci 5:5–14

    Article  PubMed  CAS  Google Scholar 

  12. Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228

    PubMed  CAS  Google Scholar 

  13. Marks JE, Baglan RJ, Prassad SC, et al (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7:243–252

    PubMed  CAS  Google Scholar 

  14. Mikhael MA (1979) Rahation necrosis of the brain: correlation between patterns on computed tomography and dose of radiation. J Comput Assist Tomogr 3:241–249

    Article  PubMed  CAS  Google Scholar 

  15. Peylan-Ramu N, Poplack DG, Pizzo PA, et al (1978) Abnormal CT scans of the brain in asymptomatic children with acute lymphocytic leukemia after prophylactic treatment of the central nervous system with radiation and intrathecal chemotherapy. N Engl J Med 298:815–818

    Article  PubMed  CAS  Google Scholar 

  16. Pezner RD, Archambeau JO (1981) Brain tolerance unit: a method to estimate risk of radiation brain injury for various dose schedules. Int J Radiat Oncol Biol Phys 7:397–402

    PubMed  CAS  Google Scholar 

  17. Sneed PK, Lamborn KR, Larson DA, et al (1996) Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 35:37–44

    Article  PubMed  CAS  Google Scholar 

  18. Bernstein M, Marotta T, Stewart P, et al (1990) Brain damage from125I brachytherapy evaluated by MR imaging a blood-brain barrier tracer, and light and electron microscopy in a rat model. J Neurosurg 73:585–593

    PubMed  CAS  Google Scholar 

  19. Fike JR, Cann CE, Phillips TL, et al (1985) Radiation brain damage induced by interstitial125I sources: a canine model evaluated by quantitative computed tomography. Neurosurgery 16:530–537

    PubMed  CAS  Google Scholar 

  20. Groothuis DR, Wright DC, Ostertag CB, et al (1987) The effect of125I interstitial radiotherapy on blood-brain barrier function in normal canine brain. J Neurosurg 67:895–902

    Article  PubMed  CAS  Google Scholar 

  21. Ostertag CB, Weigel K, Warne P, et al. (1983) Sequential morphological changes in the dog brain after interstitial iodine-125 irradiation. Neurosurgery 13:523–528

    PubMed  CAS  Google Scholar 

  22. Kohli CM, Kawazu T (1982) Solitary intracranial plasmacytoma. Surg Neurol 17:307–312

    Article  PubMed  CAS  Google Scholar 

  23. Krumholz A, Weiss HD, Jiji VH, et al (1982) Solitary intracranial plasmacytoma: two patients with extended follow-up. Ann Neurol 11:529–532

    Article  PubMed  CAS  Google Scholar 

  24. Mancardi GL, Mandybur TI (1983) Solitary intracranial plasmacytoma. Cancer 51:2226–2233

    Article  PubMed  CAS  Google Scholar 

  25. Meredith WJ (ed) (1967) Radium dosage. The Manchester System, 2nd edn. E. & S. Livingstone, Edinburgh and London

    Google Scholar 

  26. Kondziolka D, Somaza S, Martinez AJ, et al (1997) Radioprotective effects of the 21-aminosteroid U-74389G for stereotactic radiosurgery. Neurosurgery 41:203–208

    Article  PubMed  CAS  Google Scholar 

  27. Kondziolka D, Flickinger JC, Bissonette DJ, et al (1997) Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 41:776–785

    Article  PubMed  CAS  Google Scholar 

  28. Mehta MP, Masciopinto J, Rozental J, et al (1994) Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 30:541–549

    PubMed  CAS  Google Scholar 

  29. Shrieve DC, Alexander E, Wen PY, et al (1995) Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36:275–284

    PubMed  CAS  Google Scholar 

  30. Siddiqi SN, Provias J, Laperriere N, et al (1997) Effects of iodine-125 brachytherapy on the proliferative capacity and histopathological features of glioblastoma recurring after initial therapy. Neurosurgery 40:910–918

    Article  PubMed  CAS  Google Scholar 

  31. Larson DA, Gutin PH, McDermott M, et al (1996) Gamma knife for glioma: selection factors and survival. Int J Radiat Oncol Biol Phys 36:1045–1053

    Article  PubMed  CAS  Google Scholar 

  32. Cosgrove GR, Hochberg FH, Zervas NT, et al (1997) Interstitial irradiation of brain tumors, using a miniature radiosurgery device: initial experience. Neurosurgery 40:518–525

    Article  PubMed  CAS  Google Scholar 

  33. Bampoe J, Glen J, Salhia B, et al (1999) Adehoviral vector mediated gene transfer: timing of wild-type p53 gene expression in vivo and effect of tumor transduction on survival in a rat glioma brachytherapy model. Can J Neurol Sci 26 (Suppl 1):S68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Bernstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bampoc, J., Nag, S., Leung, P. et al. Brain necrosis after permanent low-activity iodine-125 implants: case report and review of toxicity from focal radiation. Brain Tumor Pathol 17, 139–145 (2000). https://doi.org/10.1007/BF02484285

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02484285

Key words

Navigation