Acta Mechanica Sinica

, Volume 20, Issue 5, pp 455–464 | Cite as

Progress in the study of retrospective numerical scheme and the climate prediction

  • Dong Wenjie
  • Chou Jieming
  • Feng Guolin
Article
  • 24 Downloads

Abstract

The retrospective numerical scheme (RNS) is a numerical computation scheme designed for multiple past value problems of the initial value in mathematics and considering the self-memory property of the system in physics. This paper briefly presents the historical background of RNS, elaborates the relation of the scheme with other difference, schemes and other meteorological prediction methods, and introduces the application of RNS to the regional climatic self-memory model, simplified climate model, barotropic model, spectral model, and mesoscale model. At last, the paper sums up and points out the application perspective of the scheme and the direction for the future study.

Key Words

meteorological prediction numerical calculation difference scheme memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robert A. A stable numerical integration scheme for the primitive meteorological equations.Atmos Ocean, 1981, 19(1): 35–46Google Scholar
  2. 2.
    O'Brien JJ. Time Integration Schemes, Advanced Physical Oceanographic Numerical Modeling. Amsterdam: Reidel Press, 1986. 155–164Google Scholar
  3. 3.
    Egger J. Volume conservation in phase space: a fresh look at numerical integration schemes.Mon Wea Rev, 1996, 124(9): 1955–1964CrossRefGoogle Scholar
  4. 4.
    Bates R. A Global multi-level atmospheric model using a vector semi-Lagrangian difference, scheme. Part I: adiabatic formulation.Mon Wea Rev, 1993, 121: 244–263CrossRefGoogle Scholar
  5. 5.
    Gu XQ, Kan HW, Cao HX, et al. A new method raising the accuracy of time difference.Adv in Nat Sci, 2001, 11(2): 208–210Google Scholar
  6. 6.
    You XT, Zhu H, Cao HX. On efficiency of retrospective integration scheme.Chin J of Atmos Sci, 2002, 26(2): 249–254Google Scholar
  7. 7.
    Lin WT. Comparative analysis of the computational stability of difference schemes of linear and nonlinear evolution equations.Adv in Nat Sci, 2000, 10(10): 936–940Google Scholar
  8. 8.
    Liao DX, Wang LM. Principle and Application of Numerical Weather Prediction. Beijing: Meteorological Press, 1986. 94–108.Google Scholar
  9. 9.
    Cao HX. Self-memorization equation in atmospheric motion.Science in China, series B, 1993, 36(7): 845–855Google Scholar
  10. 10.
    Cai JB. System Recognition. Beijing: Beijing Science and Technology University Press, 1991. 114–126Google Scholar
  11. 11.
    Xiao XA, Yan W, Zhu ZD. A new real-valued genetic algorithm.J of Air-force Meteor Inst 1999, 20(3): 227–233Google Scholar
  12. 12.
    Zeng QC, Ji CZ, Yuan CG. Design of difference schemes of primitive equations. In: Meteorological Science Institute, State Meteorological Bureau ed. Collections of Second National Numerical Weather Prediction Conference, Beijing: Science Press, 1980. 300–313Google Scholar
  13. 13.
    Rivest, C, Staniforth A, Robert R. Spurious resonant response of semi-Lagrangian discrimination to orographic forcing.Mon Wea Rev, 1994, 122: 366–376CrossRefGoogle Scholar
  14. 14.
    Wang B. A timesaving explicit scheme for numerical integration.Chin Sci Bull, 1993, 38: 230–234MATHGoogle Scholar
  15. 15.
    Koo CC. Using past data in numerical weather prediction.Acta Meter Sinica, 1958, 29(3): 176–184MathSciNetGoogle Scholar
  16. 16.
    Koo CC. On the equivalency of formulations of weather forecasting as an initial value problem and as an ‘evolution’ problem.Acta Meter Sinica, 1958, 29(2): 93–98Google Scholar
  17. 17.
    Chou JF. Problem of using past data in numerical weather prediction.Science in China, 1974, 4(6): 635–644Google Scholar
  18. 18.
    Chou JF, et al. Multi-time models for the medium-range numerical forecasts of cold-outbursts. In: Collections of National Cold Waves Medium Range Forecast Conference. Beijing: Peking University Press, 1984. 142–151Google Scholar
  19. 19.
    Zheng QL, Du XY. A new model of numerical weather prediction using multi-time observations.Science in China, 1973, 3(2): 289–297Google Scholar
  20. 20.
    Cao HX, Jiang WD, Gutowski W. A self-memorial atmospheric spectral model and its preliminary application.Atmos Sin, 1998, 22(1): 119–126Google Scholar
  21. 21.
    Gu XQ. A spectral model based on the atmospheric self-memorial principle.Chin Sci Bull, 1998, 43(9): 909–917Google Scholar
  22. 22.
    Cao HX, Feng GL. Retrospective order time integration schemes.Q J of Appl Meteor, 2000, 11(2): 249–250MathSciNetGoogle Scholar
  23. 23.
    Feng GL, Cao HX, Dong WJ, et al. A new differential scheme with multi-time.Chin Phys, 2001, 10(11): 1004–1011CrossRefGoogle Scholar
  24. 24.
    Cao HX, Gu XQ. Numerical weather forecast experiments with self-memorial spectral model.Q J of Appl Meteor, 2000, 11(4): 455–466MathSciNetGoogle Scholar
  25. 25.
    Cao HX, Feng GL, Wei FY. Modeling of a regional climate prediction.Acta Meteor Sinica, 2000, 58(2): 159–167Google Scholar
  26. 26.
    Feng GL, Cao HX, Dong WJ, et al. Prediction of precipitation during summer monsoon, with self-memorial model.Adv in Atmos Sci, 2001, 18(5): 701–709Google Scholar
  27. 27.
    Feng GL, Cao HX, Wei FY, et al. On area rainfall ensemble prediction and its application.Acta Meteor Sinica, 2001, 59(2): 206–212Google Scholar
  28. 28.
    Feng GL. Retrospective time integral scheme and its applications to the advection equation.Acta Mechanica Sinica, 2002, 18(1): 53–65MathSciNetCrossRefGoogle Scholar
  29. 29.
    Feng GL, Jia XJ, Application of retrospective time integration scheme to the prediction of torrential rain.Chinese Physics, 2004, 13(3): 413–422CrossRefGoogle Scholar
  30. 30.
    Feng GL, Dai XG, Wang AH, et al. On numerical predictability in the chaos system.Acta Phys Sini, 2001, 50(4): 606–611Google Scholar
  31. 31.
    ECMWF. ECMWF forecast model. Reading: ECMWF Research Department, 1987Google Scholar
  32. 32.
    Haltiner GJ. Numerical Weather Prediction. New York: John Wiley & Son, Inc, 1971. 390Google Scholar
  33. 33.
    Brankovic C, et al. Extended-range prediction with ECMWF models: Time-lagged ensemble forecasting.Q J R Meteor Soc, 1990, 116: 867–912CrossRefGoogle Scholar
  34. 34.
    Zheng ZG. Nonlinear Atmospheric System Study Ussing the Dynamic-statistical Method, in the Series Lectures (1) of Advanced Studies Class, Beijing: Science and Technology Department, the Training Center of China Meteorological Administration, 2000. 1–70Google Scholar
  35. 35.
    Chou JF. Nonlinearity and Complexity in Atmospheric Sciences. Beijing: Meteorological Press, 2002. 204Google Scholar
  36. 36.
    Li JP, Zeng QC, Chou JF. Computational uncertainty principle in nonlinear ordinary differential equation (I): Numerical results.Science in China (Series E), 2000, 43(5): 449–460MathSciNetGoogle Scholar
  37. 37.
    Li JP, Zeng QC, Chou JF. Computational uncertainty principle in nonlinear ordinary differential equation (II): Theoretical analysis.Science in China (Series E), 2001, 44(1): 56–74MathSciNetGoogle Scholar
  38. 38.
    Kuo BR, Jiang JM, Zhang HL, et al. Nonlinear, Characteristics and its Prediction Theories of Climate System. Beijing: Meteorological Press, 1996. 254Google Scholar
  39. 39.
    Jia XJ. Study on retrospective time integration of mesoscale numerical models, master thesis, Beijing: Chinese Academy of Meteorological Science, 2001. 66Google Scholar
  40. 40.
    Feng GL. Numerical time Integration and Its Application to Climate Model. [Ph D Thesis], Lanzhou: Lanzhou University, 2002. 131Google Scholar
  41. 41.
    Gong JD, Chou JF. The theories and methods of utilizing historical data in numerical weather forecast.J Plateau Meteor, 1999, 18(3): 392–399Google Scholar
  42. 42.
    Chou JF, Xu M. Progresses and prospects of short-range climatic prediction.Chin Sci Bull, 2001, 46(11): 890–895Google Scholar
  43. 43.
    Cao HX. The Self-memory Principle of Dynamic System—Application to Prediction and Computation. Beijing: Geological Press, 2002. 192Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 2004

Authors and Affiliations

  • Dong Wenjie
    • 1
    • 2
  • Chou Jieming
    • 1
  • Feng Guolin
    • 1
    • 2
  1. 1.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.National Climate Center of ChinaBeijingChina

Personalised recommendations