Skip to main content
Log in

The coupled effects of mechanical deformation and electronic properties in carbon nanotubes

  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics. It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes. The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube. Pure external applied load has little effect on charge distribution, but indeed influences the energy gap. Tensile load leads to a narrower energy gap and compressive load increases the gap. When the CNT is tensioned under an external electric field, the effect of mechanical load on the electronic structures of the CNT becomes significant, and the applied electric field may reduce the critical mechanical tension load remarkably. Size effects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng HM. Carbon Nanotubes Synthesis, Microstructure, Properties and Application. Beijing: Chem Tech Publisher, 2002, 203–332

    Google Scholar 

  2. Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes.Carbon, 1995, 33:925–930

    Article  Google Scholar 

  3. Treacy MM, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature, 1996, 381:678–680

    Article  Google Scholar 

  4. Falvo MR et al. Bending and buckling of carbon nanotubes under large strain.Nature, 1997, 389:582–584

    Article  Google Scholar 

  5. Wong E, Sheehan P, Lieber C. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes.Science, 1997, 277:1971–1975

    Article  Google Scholar 

  6. Yao N, Lordi V. Young's modulus of single-walled carbon nanotubes.J Appl Phys, 1998, 84:1939–1943

    Article  Google Scholar 

  7. Yakobson BI, Campbell MP, Brabec CJ, et al. High strain rate fracture and C-chain unraveling in carbon nanotubes.Comput Mater Sci, 1997, 8:341–348

    Article  Google Scholar 

  8. Yu MF, Lourie O. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.Science, 2000, 287:637–640

    Article  Google Scholar 

  9. Lourie O, Cox DM, Wagner HD. Buckling and collapse of embedded carbon nanotubes.Phys Rev Lett, 1998, 81:1638–1641

    Article  Google Scholar 

  10. Wagner HD, Lourie O, Feldman Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix.Appl Phys Lett, 1998, 72: 188–190

    Article  Google Scholar 

  11. Andrews R et al. Nanotube composite carbon fibers.Appl Phys Lett, 1999, 75:1329–1331

    Article  Google Scholar 

  12. Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes.Science, 1996, 272:523–526

    Article  Google Scholar 

  13. Fischer JE et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes.Phys Rev B, 1997, 55:R4921-R4924

    Article  Google Scholar 

  14. Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube.Nature, 1998, 393:49–52

    Article  Google Scholar 

  15. Martel R, Schmidt T, Shea HR, et al. Single- and multi-wall carbon nanotube field-effect transistors.Appl Phys Lett, 1998, 73:2447–2449

    Article  Google Scholar 

  16. Chico L, Crespi VH, Benedict LX, et al. Pure carbon nanoscale devices: nanotube heterojunctions.Phys Rev Lett, 1996, 76:971–974

    Article  Google Scholar 

  17. Postma HWC, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature.Science, 2001, 293:76–79

    Article  Google Scholar 

  18. Rueckes T, Kim K, Joselevich E. Carbon nanotube-based nonvolatile random access memory for molecular computing.Science, 2000, 289:94–97

    Article  Google Scholar 

  19. Collins PG, Arnold MS, Avouris PH. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.Science, 2001, 292:706–709

    Article  Google Scholar 

  20. Collins PG, Arnold M, Hersam M, et al. Current saturation and electrical breakdown in multiwalled carbon nanotubes.Phys Rev Lett, 2001, 86:3128–3131

    Article  Google Scholar 

  21. De Heer WA, Chatelain A, Ugarte D. Aligned nanotube films: production and optical and electronic properties.Science, 1995, 268:845–847

    Article  Google Scholar 

  22. Rinzler AG, et al. Unraveling nanotubes-field-emission from an atomic wire.Science, 1995, 269: 1550–1553

    Article  Google Scholar 

  23. Zhou G, Duan WH, Gu BL. Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes.Phys Rev Lett, 2001, 87:095504–095507

    Article  Google Scholar 

  24. Wang ZL, Gao RP, Poncharal P, et al. Mechanical and electrostatic properties of carbon nanotubes and nanowires.Materials Science and Engineering C, 2001, 16:3–10

    Article  Google Scholar 

  25. Hansson A, Paulsson M, Stafstroml S. Effect of bending and vacancies on the conductance of carbon nanotubes.Phys Rev B, 2000, 62:7639–7644

    Article  Google Scholar 

  26. Tekleab D, Carroll DL, Samsonidze GG, et al. Strain-induced electronic property heterogeneity of a carbon nanotube.Phys Rev B, 2001, 64:035419–035424

    Article  Google Scholar 

  27. Kim C, Kim B. Effect of electric field on the electronic structures of carbon nanotubes.Appl Phys Lett, 2001, 79:1187–1189

    Article  Google Scholar 

  28. Leach AR. Molecular Modelling. London: Addison Wesley Longman Limited, 1996. 54–79

    Google Scholar 

  29. Stewart JJR. Optimization of parameters for semi-empirical method I. Method.J Comput Chem, 1989 10:209–220

    Article  Google Scholar 

  30. Stewart JJR. Optimization of parameters for semi-empirical method II. Applications.J Comput Chem, 1989, 10:221–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project supported by the National Natural Science Foundation of China (10372044) and the Cheung Kong Scholars Programme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanlin, G., Yufeng, G. The coupled effects of mechanical deformation and electronic properties in carbon nanotubes. Acta Mech Sin 20, 192–198 (2004). https://doi.org/10.1007/BF02484265

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02484265

Key Words

Navigation