Acta Mechanica Sinica

, Volume 20, Issue 2, pp 192–198 | Cite as

The coupled effects of mechanical deformation and electronic properties in carbon nanotubes

  • Guo Wanlin
  • Guo Yufeng
Article

Abstract

Coupled effects of mechanical and electronic behavior in single walled carbon nanotubes are investigated by using quantum mechanics and quantum molecular dynamics. It is found that external applied electric fields can cause charge polarization and significant geometric deformation in metallic and semi-metallic carbon nanotubes. The electric induced axial tension ratio can be up to 10% in the armchair tube and 8.5% in the zigzag tube. Pure external applied load has little effect on charge distribution, but indeed influences the energy gap. Tensile load leads to a narrower energy gap and compressive load increases the gap. When the CNT is tensioned under an external electric field, the effect of mechanical load on the electronic structures of the CNT becomes significant, and the applied electric field may reduce the critical mechanical tension load remarkably. Size effects are also discussed.

Key Words

quantum mechanics quantum-molecular dynamics single-walled carbon nanotube coupled effect mechanical-electronic property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng HM. Carbon Nanotubes Synthesis, Microstructure, Properties and Application. Beijing: Chem Tech Publisher, 2002, 203–332Google Scholar
  2. 2.
    Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes.Carbon, 1995, 33:925–930CrossRefGoogle Scholar
  3. 3.
    Treacy MM, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes.Nature, 1996, 381:678–680CrossRefGoogle Scholar
  4. 4.
    Falvo MR et al. Bending and buckling of carbon nanotubes under large strain.Nature, 1997, 389:582–584CrossRefGoogle Scholar
  5. 5.
    Wong E, Sheehan P, Lieber C. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes.Science, 1997, 277:1971–1975CrossRefGoogle Scholar
  6. 6.
    Yao N, Lordi V. Young's modulus of single-walled carbon nanotubes.J Appl Phys, 1998, 84:1939–1943CrossRefGoogle Scholar
  7. 7.
    Yakobson BI, Campbell MP, Brabec CJ, et al. High strain rate fracture and C-chain unraveling in carbon nanotubes.Comput Mater Sci, 1997, 8:341–348CrossRefGoogle Scholar
  8. 8.
    Yu MF, Lourie O. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load.Science, 2000, 287:637–640CrossRefGoogle Scholar
  9. 9.
    Lourie O, Cox DM, Wagner HD. Buckling and collapse of embedded carbon nanotubes.Phys Rev Lett, 1998, 81:1638–1641CrossRefGoogle Scholar
  10. 10.
    Wagner HD, Lourie O, Feldman Y, et al. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix.Appl Phys Lett, 1998, 72: 188–190CrossRefGoogle Scholar
  11. 11.
    Andrews R et al. Nanotube composite carbon fibers.Appl Phys Lett, 1999, 75:1329–1331CrossRefGoogle Scholar
  12. 12.
    Dai H, Wong EW, Lieber CM. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes.Science, 1996, 272:523–526CrossRefGoogle Scholar
  13. 13.
    Fischer JE et al. Metallic resistivity in crystalline ropes of single-wall carbon nanotubes.Phys Rev B, 1997, 55:R4921-R4924CrossRefGoogle Scholar
  14. 14.
    Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbon nanotube.Nature, 1998, 393:49–52CrossRefGoogle Scholar
  15. 15.
    Martel R, Schmidt T, Shea HR, et al. Single- and multi-wall carbon nanotube field-effect transistors.Appl Phys Lett, 1998, 73:2447–2449CrossRefGoogle Scholar
  16. 16.
    Chico L, Crespi VH, Benedict LX, et al. Pure carbon nanoscale devices: nanotube heterojunctions.Phys Rev Lett, 1996, 76:971–974CrossRefGoogle Scholar
  17. 17.
    Postma HWC, Teepen T, Yao Z, et al. Carbon nanotube single-electron transistors at room temperature.Science, 2001, 293:76–79CrossRefGoogle Scholar
  18. 18.
    Rueckes T, Kim K, Joselevich E. Carbon nanotube-based nonvolatile random access memory for molecular computing.Science, 2000, 289:94–97CrossRefGoogle Scholar
  19. 19.
    Collins PG, Arnold MS, Avouris PH. Engineering carbon nanotubes and nanotube circuits using electrical breakdown.Science, 2001, 292:706–709CrossRefGoogle Scholar
  20. 20.
    Collins PG, Arnold M, Hersam M, et al. Current saturation and electrical breakdown in multiwalled carbon nanotubes.Phys Rev Lett, 2001, 86:3128–3131CrossRefGoogle Scholar
  21. 21.
    De Heer WA, Chatelain A, Ugarte D. Aligned nanotube films: production and optical and electronic properties.Science, 1995, 268:845–847CrossRefGoogle Scholar
  22. 22.
    Rinzler AG, et al. Unraveling nanotubes-field-emission from an atomic wire.Science, 1995, 269: 1550–1553CrossRefGoogle Scholar
  23. 23.
    Zhou G, Duan WH, Gu BL. Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes.Phys Rev Lett, 2001, 87:095504–095507CrossRefGoogle Scholar
  24. 24.
    Wang ZL, Gao RP, Poncharal P, et al. Mechanical and electrostatic properties of carbon nanotubes and nanowires.Materials Science and Engineering C, 2001, 16:3–10CrossRefGoogle Scholar
  25. 25.
    Hansson A, Paulsson M, Stafstroml S. Effect of bending and vacancies on the conductance of carbon nanotubes.Phys Rev B, 2000, 62:7639–7644CrossRefGoogle Scholar
  26. 26.
    Tekleab D, Carroll DL, Samsonidze GG, et al. Strain-induced electronic property heterogeneity of a carbon nanotube.Phys Rev B, 2001, 64:035419–035424CrossRefGoogle Scholar
  27. 27.
    Kim C, Kim B. Effect of electric field on the electronic structures of carbon nanotubes.Appl Phys Lett, 2001, 79:1187–1189CrossRefGoogle Scholar
  28. 28.
    Leach AR. Molecular Modelling. London: Addison Wesley Longman Limited, 1996. 54–79Google Scholar
  29. 29.
    Stewart JJR. Optimization of parameters for semi-empirical method I. Method.J Comput Chem, 1989 10:209–220CrossRefGoogle Scholar
  30. 30.
    Stewart JJR. Optimization of parameters for semi-empirical method II. Applications.J Comput Chem, 1989, 10:221–264CrossRefGoogle Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 2004

Authors and Affiliations

  • Guo Wanlin
    • 1
    • 2
  • Guo Yufeng
    • 1
  1. 1.Institute of NanoscienceNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Engineering MechanicsXi'an Jiaotong UniversityXi'anChina

Personalised recommendations