Advertisement

Acta Mechanica Sinica

, Volume 20, Issue 1, pp 46–53 | Cite as

Constitutive equation of co-rotational derivative type for anisotropic-viscoelastic fluid

  • Han Shifang
Article

Abstract

A constitutive equation theory of Oldroyd fluid B type, i.e. the co-rotational derivative type, is developed for the anisotropic-viscoelastic fluid of liquid crystalline (LC) polymer. Analyzing the influence of the orientational motion on the material behavior and neglecting the influence, the constitutive equation is applied to a simple case for the hydrodynamic motion when the orientational contribution is neglected in it and the anisotropic relaxation, retardation times and anisotropic viscosities are introduced to describe the macroscopic behavior of the anisotropic LC polymer fluid. Using the equation for the shear flow of LC polymer fluid, the analytical expressions of the apparent viscosity and the normal stress differences are given which are in a good agreement with the experimental results of Baek et al. For the fiber spinning flow of the fluid, the analytical expression of the extensional viscosity is given.

Key Words

constitutive equation anisotropic-viscoelastic fluid liquid crystalline polymer non-Newtonian flow co-rotational derivative anisotropic material functions shear flow extensional flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Han SF. Constitutive Equation and Computatinal Analytical Theory of Non-Newtonian Fluids. Beijing: Science Press, 2000Google Scholar
  2. 2.
    Ericksen JL. Conservation laws for liquid crystals.Trans Soc Rheol, 1961, 5: 23–34MathSciNetCrossRefGoogle Scholar
  3. 3.
    Leslie FM. Theory of flow phenomena in liquid crystals. In: Brown GH ed. Advances in Liquid Crystals, Vol 1, New York: Academic, 1979. 1Google Scholar
  4. 4.
    Chandrasekhar S. Liquid Crystals. Cambridge Univ. Press, 1977Google Scholar
  5. 5.
    Doi M, Edwards SF. The Theory of Polymer Dynamics, Oxford London, 1986Google Scholar
  6. 6.
    Marrucci G, Maffettonr PL. Description of the liquid-crystalline phase of rodlike polymer at high shear rates.Macromolecules, 1999, 22: 4076–4082CrossRefGoogle Scholar
  7. 7.
    Onogi S, Asada T. Rheology and rheo-optics of polymer liquid crystal. In: Astria G, Marrucci G, Nicolai eds. Rheology. New York: Plenum, 1980. 127–147Google Scholar
  8. 8.
    Baek SG, Magda JJ, Larson RG. Rheological differences among liquid-crystalline polymers I. The first and second normal stress differences of PBG solutions.J of Rheology, 1993, 37(6): 1201–1224CrossRefGoogle Scholar
  9. 9.
    Baek SG, Magda JJ, Larson RG, et al. Rheological differences among liquid-crystalline polymers II. T Disappearance of nagativeN 1 in densely packed lyotropic and thermotropes.J of Rheology, 1994, 38(5): 1473–1503CrossRefGoogle Scholar
  10. 10.
    Walker L, Wagner N. Rheology of region I flow in a Lyotropic liquid crystal polymer: The effects of defect texture.J of Rheology, 1994, 38(5): 1525–1547CrossRefGoogle Scholar
  11. 11.
    Moldenaers P, Mewis J. On the nature of viscoelasticity in polymeric liquid crystals.J of Rheology, 1993, 37(2): 367–380CrossRefGoogle Scholar
  12. 12.
    Moldenaers P, Mewis J. Relaxational phenomena and anisotropy in isotropic polymeric liquid crystal.J Non-Newtonian Fluid Mech, 1990, 34: 359–374CrossRefGoogle Scholar
  13. 13.
    Baleo JN, Vincent M, Navard P. Finite element simulation of flow and dirctor orientation of viscous anisotropic fluids in complex 2D geometries.J of Rheology, 1982, 36(4): 663–701CrossRefGoogle Scholar
  14. 14.
    Brave AV, Menon RK, Armstrong RC, et al. A constitutive equation for liquid crystalline polymer solution.J of Rheology, 1982, 36(4): 663–701Google Scholar
  15. 15.
    Volkov VS, Kulichikhin VG. Anisitropic viscoelasticity of liquid crystaline polymers.J Rheol, 1990, 34(3): 281–293CrossRefGoogle Scholar
  16. 16.
    Han SF. Constitutive equation of Maxwell-Oldroyd type for liquid crystalline polymer and its fluid flow. In: Zhuang FG ed. Proc of 3rd Int Conference on Fluid Mechanics. Beijing: Beijing Institute of Technology Press, 1998. 723–728Google Scholar
  17. 17.
    Han SF. Computational spectral approach to unsteady rotating flow of non-Newtonian fluid. In: Cui EJ ed. Proc of 8th Asian Congress of Fluid Mechanics. Beijing: International Academic Publishers, 1999. 582–586Google Scholar
  18. 18.
    Han SF. Constitutive equation of liquid crystalline polymer anisotropic viscoelastic fluid.Acta Mechanica Sinica, 2001, 33(5): 588–600Google Scholar
  19. 19.
    Han SF. Rheology of liquid crystalline polymer—Front direction in rheology.Mechanics in Engineering, 2001, 23(3): 1–6MATHGoogle Scholar
  20. 20.
    Gotsis AD, Odriozola MA. Extensional viscosity of a thermotropic liquid crystalline polymer.J Rheol, 2000, 44(5): 1205–1225CrossRefGoogle Scholar
  21. 21.
    Han SF, Wang YB. Nematic behavior of liquid crystalline polymer and its rheological character.Mechanics in Engineering, 2003, 25(2): 12–14Google Scholar

Copyright information

© Chinese Society of Theoretical and Applied Mechanics 2004

Authors and Affiliations

  • Han Shifang
    • 1
  1. 1.Res. Lab. of Non-Newtonian Fluid Mechanics, Chengdu Institute of Computer ApplicationChinese Academy of SciencesChengduChina

Personalised recommendations