algebra universalis

, Volume 12, Issue 1, pp 242–246 | Cite as

Embedding modular lattices into relation algebras

  • Roger Maddux
Article

Keywords

Equivalence Relation Boolean Algebra Minimum Element Projective Geometry Algebra UNIV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. H. Chin andA. Tarski,Distributive and modular laws in the arithmetic of relation algebras. University of California Publications in Mathematics, new series, vol. 1, no. 9 (1951), pp. 341–384.MATHMathSciNetGoogle Scholar
  2. [2]
    S. D. Comer,Integral relation algebras via pseudogroups. Notices Amer. Math. Soc., vol. 23 (1976), p. A-659.Google Scholar
  3. [3]
    P. Crawley andR. P. Dilworth,Algebraic theory of lattices. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973.MATHGoogle Scholar
  4. [4]
    B. Jónsson,Representation of modular lattices and relation algebras. Trans. Amer. Math. Soc., vol. 92 (1959), pp. 449–464.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. C. Lyndon,The representation of relational algebras. Ann. of Math., ser 2, vol. 51 (1950), pp. 707–729.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. C. Lyndon,Relation algebras and projective geometries. Michigan Math. J., vol. 8 (1961), pp. 21–28.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. D. Maddux,Some non-representable relation algebras. Notices Amer. Math. Soc., vol. 23 (1976), pp. A-431, A-557.Google Scholar
  8. [8]
    R. McKenzie,Representations of integral relation algebras. Michigan Math. J., vol. 17 (1970), pp. 279–287.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    U. Wostner,Finite relation algebras. Notices Amer. Math. Soc., vol. 23 (1976), p. A-482.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Roger Maddux
    • 1
  1. 1.Iowa State UniversityAmesU.S.A.

Personalised recommendations