algebra universalis

, Volume 12, Issue 1, pp 242–246 | Cite as

Embedding modular lattices into relation algebras

  • Roger Maddux


Equivalence Relation Boolean Algebra Minimum Element Projective Geometry Algebra UNIV 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. H. Chin andA. Tarski,Distributive and modular laws in the arithmetic of relation algebras. University of California Publications in Mathematics, new series, vol. 1, no. 9 (1951), pp. 341–384.MATHMathSciNetGoogle Scholar
  2. [2]
    S. D. Comer,Integral relation algebras via pseudogroups. Notices Amer. Math. Soc., vol. 23 (1976), p. A-659.Google Scholar
  3. [3]
    P. Crawley andR. P. Dilworth,Algebraic theory of lattices. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973.MATHGoogle Scholar
  4. [4]
    B. Jónsson,Representation of modular lattices and relation algebras. Trans. Amer. Math. Soc., vol. 92 (1959), pp. 449–464.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    R. C. Lyndon,The representation of relational algebras. Ann. of Math., ser 2, vol. 51 (1950), pp. 707–729.MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    R. C. Lyndon,Relation algebras and projective geometries. Michigan Math. J., vol. 8 (1961), pp. 21–28.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. D. Maddux,Some non-representable relation algebras. Notices Amer. Math. Soc., vol. 23 (1976), pp. A-431, A-557.Google Scholar
  8. [8]
    R. McKenzie,Representations of integral relation algebras. Michigan Math. J., vol. 17 (1970), pp. 279–287.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    U. Wostner,Finite relation algebras. Notices Amer. Math. Soc., vol. 23 (1976), p. A-482.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Roger Maddux
    • 1
  1. 1.Iowa State UniversityAmesU.S.A.

Personalised recommendations