algebra universalis

, Volume 12, Issue 1, pp 154–159 | Cite as

A lemma on flatness

  • B. Banaschewski


Direct Limit Algebra UNIV Galois Connection Proper Class Essential Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Banaschewski,Injectivity and essential extensions in equational classes of algebras, Queen's Papers Pure Appl. Math.25 (1970), 131–147.MathSciNetGoogle Scholar
  2. [2]
    B. Banaschewski,Sheaves of Banach spaces. Quaest. Math.2 (1977), 1–22.MATHMathSciNetGoogle Scholar
  3. [3]
    B. Banaschewski,Essential extensions of T 0-spaces. Gen. Top. Appl.7 (1977), 233–246.MATHMathSciNetGoogle Scholar
  4. [4]
    B. Banaschewski andG. Bruns,Categorical characterization of the MacNeille completion. Arch. der Math.18 (1967), 369–377.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    B. Banaschewski andE. Nelson,Tensor products and bimorphisms. Can. Math. Bull.19 (1976), 385–401.MATHMathSciNetGoogle Scholar
  6. [6]
    N. Bourbaki,Algèbre Commutative, Ch. I & II. Act. sci. et ind. 1290, Hermann, Paris 1961.Google Scholar
  7. [7]
    G. Bruns andH. Lakser,Injective hulls of semilattices. Can. Math. Bull.13 (1970), 115–118.MATHMathSciNetGoogle Scholar
  8. [8]
    S. Bulman-Fleming andK. McDowell,The category of mono-unary algebras. Alg. Univ. (to appear).Google Scholar
  9. [9]
    S. Bulman-Fleming andK. McDowell,Flat semilattices. Proc. Amer. Math. Soc.72 (1978), 228–232.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Bulman-Fleming andK. McDowell,Flatness in varieties of normal bands (to appear).Google Scholar
  11. [11]
    H. B. Cohen,Injective envelopes of Banach spaces. Bull. Amer. Math. Soc.70 (1964), 723–726.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    G. Grätzer,Universal Algebra. Van Nostrand, Princeton 1968.MATHGoogle Scholar
  13. [13]
    M. Kel'p,On homological classification of monoids. Siberian Math. J.13 (1972), 396–401.CrossRefGoogle Scholar
  14. [14]
    J. Lambek,A module is flat if and only if its character module is injective. Can. Math. Bull7 (1964), 237–243.MathSciNetMATHGoogle Scholar
  15. [15]
    J. Lambek,Lectures on rings and modules. Blaisdell, Toronto, 1966.MATHGoogle Scholar
  16. [16]
    D. Lazard,Author de la platitude. Bull. Soc. Math. France97 (1969), 81–128.MATHMathSciNetGoogle Scholar
  17. [17]
    S. Mac Lane,Categories for the working mathematician. Graduate Texts in Mathematics 5, Springer-Verlag, New York Heidelberg Berlin 1971.MATHGoogle Scholar
  18. [18]
    E. Nelson,Galois connections as left adjoint maps. Comm. Math. Univ. Carol.17 (1976), 523–541.MATHGoogle Scholar
  19. [19]
    D. Scott,Continuous lattices. LNM 274, 97–136. Springer-Verlag, Berlin-Heidelberg-New York, 1972.MATHGoogle Scholar
  20. [20]
    B. Stenström,Flatness and localization over monoids. Math. Nachr.48 (1970), 315–334.Google Scholar
  21. [21]
    B. Zimmermann,Endomorphismenringe von Selbstgeneratoren. Doctoral thesis. Munich, 1974.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • B. Banaschewski
    • 1
  1. 1.McMaster UniversityHamiltonCanada

Personalised recommendations