algebra universalis

, Volume 12, Issue 1, pp 137–144 | Cite as

Model completeness of some metric completions of absolutely free algebras

  • Jan Mycielski
  • Paul Perlmutter


Model Completeness Algebra UNIV Free Algebra Equational Compactness Existential Formula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. C. Chang andH. J. Keisler,Model theory, North-Holland Publ. Co., 1973.Google Scholar
  2. [2]
    G. Kreisel andJ. L. Krivine,Elements of mathematical logic, North-Holland Publ. Co., 1967.Google Scholar
  3. [3]
    A. I. Mal'cev,Axiomatizable classes of locally free algebras of various types, in his collected papers,The metamathematics of algebraic systems, North-Holland Publ. Co., 1971, 262–281.Google Scholar
  4. [4]
    J. Mycielski andW. Taylor,A compactification of the algebra of terms, Algebra Universalis6 (1976), 159–163.MATHMathSciNetGoogle Scholar
  5. [5]
    P. Perlmutter,Some completions of the algebra of terms, Thesis, University of Colorado, 1975.Google Scholar
  6. [6]
    A. Robinson,Model theory as a framework for algebra, inStudies in Model Theory, MAA Studies in Math. vol. 8, Editor M. D. Morley 1973, pp. 134–157.Google Scholar
  7. [7]
    G. Sacks Saturated model theory, Math. Lecture Notes Series, Publ. W. A. Benjamin Inc. 1972.Google Scholar
  8. [8]
    B. Weglorz,Equationally compact algebras (I), Fund. Math.59 (1966), 289–298.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • Jan Mycielski
    • 1
    • 2
  • Paul Perlmutter
    • 1
    • 2
  1. 1.University of ColoradoBoulderU.S.A.
  2. 2.Southern Illinois UniversityCarbondaleU.S.A.

Personalised recommendations