algebra universalis

, Volume 12, Issue 1, pp 93–102 | Cite as

Categorical De Morgan laws

  • M. E. Szabo


Boolean Algebra Algebra UNIV Small Category Heyting Algebra Finite Distributive Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [0]
    P. Freyd, Aspects of topoi,Bulletin of the australian Mathematical Society 7 (1972), 1–76.MATHMathSciNetCrossRefGoogle Scholar
  2. [1]
    F. W. Lawvere, C. Maurer, andG. C. Wraith (editors),Model Theory and Topoi, Lecture Notes in Mathematics, Volume 445, Springer, Berlin, 1975.MATHGoogle Scholar
  3. [2]
    S. Mac Lane,Categories for the Working Mathematician, Springer, Berlin, 1971.MATHGoogle Scholar
  4. [3]
    S. Mac Lane, Sets, topoi, and internal logic in categories, in [5]Google Scholar
  5. [4]
    H. Rasiowa andR. Sikorski,The Mathematics of Metamathematics, Warsaw, 1970.Google Scholar
  6. [5]
    H. E. Rose andJ. C. Shepherdson (editors),Logic Colloquium '76, North-Holland Amsterdam. (1975).Google Scholar
  7. [6]
    M. E. Szabo (editor),The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969.MATHGoogle Scholar
  8. [7]
    M. E. Szabo, A categorical characterization of Boolean algebras,Algebra Universalis 4 (1974), 192–194.MATHMathSciNetGoogle Scholar
  9. [8]
    M. E. Szabo,Algebra of Proofs, North-Holland, Amsterdam, in press.Google Scholar
  10. [9]
    G. C. Wraith Lectures on elementary topoi, in [1] 114–206.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • M. E. Szabo
    • 1
  1. 1.Concordia UniversityMontrealCanada

Personalised recommendations