algebra universalis

, Volume 12, Issue 1, pp 93–102 | Cite as

Categorical De Morgan laws

  • M. E. Szabo


Boolean Algebra Algebra UNIV Small Category Heyting Algebra Finite Distributive Lattice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [0]
    P. Freyd, Aspects of topoi,Bulletin of the australian Mathematical Society 7 (1972), 1–76.MATHMathSciNetCrossRefGoogle Scholar
  2. [1]
    F. W. Lawvere, C. Maurer, andG. C. Wraith (editors),Model Theory and Topoi, Lecture Notes in Mathematics, Volume 445, Springer, Berlin, 1975.MATHGoogle Scholar
  3. [2]
    S. Mac Lane,Categories for the Working Mathematician, Springer, Berlin, 1971.MATHGoogle Scholar
  4. [3]
    S. Mac Lane, Sets, topoi, and internal logic in categories, in [5]Google Scholar
  5. [4]
    H. Rasiowa andR. Sikorski,The Mathematics of Metamathematics, Warsaw, 1970.Google Scholar
  6. [5]
    H. E. Rose andJ. C. Shepherdson (editors),Logic Colloquium '76, North-Holland Amsterdam. (1975).Google Scholar
  7. [6]
    M. E. Szabo (editor),The Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969.MATHGoogle Scholar
  8. [7]
    M. E. Szabo, A categorical characterization of Boolean algebras,Algebra Universalis 4 (1974), 192–194.MATHMathSciNetGoogle Scholar
  9. [8]
    M. E. Szabo,Algebra of Proofs, North-Holland, Amsterdam, in press.Google Scholar
  10. [9]
    G. C. Wraith Lectures on elementary topoi, in [1] 114–206.Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • M. E. Szabo
    • 1
  1. 1.Concordia UniversityMontrealCanada

Personalised recommendations