Materials and Structures

, Volume 37, Issue 9, pp 597–607 | Cite as

Hygrothermal properties of glass fiber reinforced cements subjected to elevated temperature

  • R. Černý
  • J. Poděbradská
  • M. Totová
  • J. Toman
  • J. Drchalová
  • P. Rovnaníková
  • P. Bayer
Scientific Report
  • 182 Downloads

Abstract

The effect of elevated temperatures on basic hygric and thermal properties of three types of glass fiber reinforced cement composites (GFRC) is analyzed in the paper. The main difference in the composition of particular GFRC is the use of wollastonite and vermiculite in two of them instead of usual sand aggregates. The composites containing wollastonite and vermiculite are found to have about four times lower thermal conductivity and two to three times lower thermal diffusivity in room temperature conditions. After heating the samples to 800°C and subsequent cooling, a decrease in room-temperature thermal conductivity as high as 50% and an increase in moisture diffusivity in the range of one to two orders of magnitude are observed for all types of studied materials. The application of wollastonite and vermiculite exhibits a positive effect on the high temperature linear thermal expansion coefficient. On the other hand, for temperatures higher than 450°C the thermal diffusivity of materials with wollastonite and vermiculite is higher than of common GFRC with sand aggregates.

Keywords

Thermal Diffusivity Specific Heat Capacity Wollastonite Calcium Hydroxide Moisture Diffusivity 

Résumé

L'effet des températures élevées sur les principales propriétés hygriques et thermiques de trois types de matériaux composites à base de ciment renforcés par des fibres de verre (GFRC) est analysé dans cet article. La différence majeure de composition de ces matériaux est l'utilisation de wollastonite et de vermiculite dans deux d'entre eux au lieu des granulats de sable habituels. Les matériaux composites contenant de la wollastonite et de la vermiculie s'avèrent posséder une conductivité thermique environ quatre fois inférieure et une diffusivité thermique deux à trois fois inférieure en conditions de température ambiante. Après avoir chauffé les échantillons à 800°C puis les avoir refroidis, on observe pour tous les types de matériaux étudiés une diminution de la conductivité thermique à température ambiante, à hauteur de 50%, et une augmentation de la diffusivité d'humidité, d'environ un à deux ordres de grandeur. L'application de la wollastonite et de la vermiculite montre un effet positif sur le coefficient linéaire à haute température de dilatation thermique. D'autre part, pour les températures supérieures à 450°C, la diffusivité thermique des matériaux contenant de la wollastonite et de la vermiculite est plus élevée que celle des GFRC communs avec des granulats de sable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Majumdar, A.J. and Laws, V., ‘Glass Fibre Reinforced Cement’ (BSP, Oxford, 1991).Google Scholar
  2. [2]
    West, J.M., Majumdar, A.J. and de Vekey, R.C., ‘Polymer impregnated lightweight GRC’,Composite 11 (1980) 19–24.CrossRefGoogle Scholar
  3. [3]
    West, J.M., Majumdar, A.J. and de Vekey, R.C., ‘Polymer impregnated lightweight GRC’,Composites 11 (1980) 169–174.CrossRefGoogle Scholar
  4. [4]
    Young, J., ‘Designing with GRC’ (Architectural Press, London, 1978).Google Scholar
  5. [5]
    True, G., ‘GRC Production and Uses’ (Palladian Publications Ltd., London, 1986).Google Scholar
  6. [6]
    Zhang, Y., Sun, W., Shang, L. and Pan, G., ‘The effect of high content of fly ash on the properties of glass fiber reinforced cementitious composites’,Cement and Concrete Research 27 (1997) 1885–1891.CrossRefGoogle Scholar
  7. [7]
    Huang, C.M., Zhu, D., Cong, X.D., Kriven, W.M., Loh, R.R. and Huang, J., ‘Carbon-coated-glass-fiber-reinforced cement composites I: fiber pushout and interfacial properties’,Journal of American Ceramic Society 80 (1997) 2326–2332.Google Scholar
  8. [8]
    Marikunte, S., Aldea, C. and Shah, S.P., ‘Durability of glass fiber reinforced cement composites’,Advanced Cement Based Materials 5 (1997) 100–108.CrossRefGoogle Scholar
  9. [9]
    Park, S.B., Yoon, E.S. and Lee, B.I., ‘Effects of processing and materials variations on mechanical properties of lightweight cement composites’,Cement and Concrete Research 29 (1999) 193–200.CrossRefGoogle Scholar
  10. [10]
    Mu, B., Li, Z. and Peng, J., ‘Short fiber-reinforced cementitious extruded plates with high percentage of slag and different fibers’,Cement and Concrete Research 30 (2000) 1277–1282.CrossRefGoogle Scholar
  11. [11]
    Mu, B., Meyer, C. and Shimanovich, S., ‘Improving the interface bond between fiber mesh and cementitious matrix’,Cement and Concrete Research 32 (2002) 783–787.CrossRefGoogle Scholar
  12. [12]
    Trtik, P. and Bartos, P.J.M., ‘Assessment of glass fibre reinforced cement by in-situ SEM bending test’,Mater. Struct. 32 (1999) 140–143.CrossRefGoogle Scholar
  13. [13]
    Purnell, P., Buchanan, A.J., Short, N.R., Page, C.L. and Majumdar, A.J., ‘Determination of bond strength in glass fibre reinforced cement using petrography and image analysis’,Journal of Materials Science 35 (2000) 4653–4659.CrossRefGoogle Scholar
  14. [14]
    Zhu, W. and Bartos, P.J.M., ‘Assessment of interfacial microstructure and bond properties in aged GRC using a novel microindentation method’,Cement and Concrete Research 27 (1997) 1701–1711.CrossRefGoogle Scholar
  15. [15]
    Purnell, P., Short, N.R., Page, C.L., Majumdar, A.J. and Walton, P.L., ‘Accelerated ageing characteristics of glass-fibre reinforced cement made with new cementitious matrices’,Composites Part A— Applied Science and Manufacturing 30 (1999) 1073–1080.CrossRefGoogle Scholar
  16. [16]
    Purnell, P., Short, N.R. and Page, C.L., ‘A static fatigue model for the durability of glass fibre reinforced cement’,Journal of Materials Science 36 (2001) 5385–5390.CrossRefGoogle Scholar
  17. [17]
    Purnell, P., Short, N.R. and Page, C.L., ‘Super-critical carbonation of glass-fibre reinforced cement. Part 1: mechanical testing and chemical analysis’,Composites Part A— Applied Science and Manufacturing 32 (2001) 1777–1787.CrossRefGoogle Scholar
  18. [18]
    Seneviratne, A.M.G., Short, N.R., Purnell, P. and Page, C.L., ‘Preliminary investigations of the dimensional stability of super-critically carbonated glass-fibre reinforced cement’,Cement and Concrete Research 32 (2002) 1639–1644.CrossRefGoogle Scholar
  19. [19]
    Černý, R. and Toman, J., ‘Determination of temperature-and moisture-dependent thermal conductivity by solving the inverse problem of heat conduction’, in ‘V.P. de Freitas’, V. Abrantes (eds.) Proc. of International Symposium on Moisture Problems in Building Walls, (Univ. of Porto, Porto, 1995) 299–308.Google Scholar
  20. [20]
    Toman, J., Koudelová, P. and Černý, R., ‘A measuring method for the determination of linear thermal expansion of porous materials at high temperatures’,High Temperatures— High Pressures 31 (1999) 595–600.CrossRefGoogle Scholar
  21. [21]
    Drchalová, J. and Černý, R, ‘A Simple Gravimetric Method for Determining the Moisture Diffusivity of Building Materials’,Construction and Building Materials 17 (2003) 223–228.CrossRefGoogle Scholar
  22. [22]
    Matano, C., ‘On the relation between the diffusion coefficient and concentration of solid metals’,Jap. J. Phys. 8 (1933) 109–115.Google Scholar
  23. [23]
    Drchalová, J. and Černý, R., ‘Non steady-state methods for determining the moisture diffusivity of porous materials’,Int. Comm. Heat and Mass Transfer 25 (1998) 109–116.CrossRefGoogle Scholar
  24. [24]
    Černý, R., Drchalová, J., Hošková, Š. and Toman, J., ‘Inverse problems of moisture transport in porous materials’ in ‘Proceedings of Second ECCOMAS Conf. on Numerical Methods in Engineering’, (John Wiley and Sons. Chichester, 1996) 664–670.Google Scholar
  25. [25]
    Collins, R.E., ‘Flow of Fluids Through Porous Materials’ (Reinhold Publishing Corporation, New York, 1961).Google Scholar
  26. [26]
    Černý, R. and Rovnaníková, P., ‘Transport Processes in Concrete’ (Spon Press, London, 2002).Google Scholar

Copyright information

© RILEM 2004

Authors and Affiliations

  • R. Černý
    • 1
  • J. Poděbradská
    • 1
  • M. Totová
    • 1
  • J. Toman
    • 2
  • J. Drchalová
    • 2
  • P. Rovnaníková
    • 3
  • P. Bayer
    • 3
  1. 1.Faculty of Civil Engineering, Department of Structural MechanicsCzech Technical UniversityPrague 6Czech Republic
  2. 2.Faculty of Civil Engineering, Department of PhysicsCzech Technical UniversityPrague 6Czech Republic
  3. 3.Institute of Chemistry, Faculty of Civil EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations