Materials and Structures

, Volume 36, Issue 9, pp 570–577 | Cite as

Structural model adjustment using iterative methods

  • N. Roitman
  • C. Magluta
  • R. S. Oliveira


This paper reports a procedure for adjusting structural theoretical models to experimental results based on optimization techniques. It also covers some of the basic concepts of correlation techniques that are normally used to correlate natural frequencies and vibration modes. The developed method is tested performing some numerical simulations with imposed anomalies and through dynamic experimental tests in a simple supported beam. The obtained results show it can be an excellent tool for adjusting structural models and possibly for damage detection using the first vibration modes.


Damage Detection Priority Level Inertia Moment Rotational Masse Goal Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Cet article présente un procédé basé sur des techniques d'optimisation pour l'ajustement des modèles théoriques de calcul de structures vis-à-vis des résultats obtenus expérimentalement. Certains concepts de base sur les techniques de corrélation qui sont normalement utilisés pour mettre en rapport les fréquences propres et les modes de vibration y sont aussi présentés. La méthode développée fut testée, soit par le moyen de simulations numériques avec des anomalies imposées, soit par le moyen d'analyse expérimentale dynamique sur des poutres sur deux appuis simples. Les résultats ont indiqué que la méthode ci-présentée peut être un outil très profitable pour l'ajustement des modèles de structures, son utilisation pour la détection de l'endommagement étant aussi envisageable à l'aide des premiers modes de vibration.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Friswell, M.I. and Mottershead, J.E., ‘Finite Element Model Updating in Structural Dynamics’, 1st ed. Dordrecht (Kluwer Academic Publishers, Netherlands, 1995).MATHGoogle Scholar
  2. [2]
    Rad, S.Z., ‘Methods for updating numerical models in structural dynamics,’ Ph.D. dissertation, Imperial College of Science, Technology and Medicine, London, 1997.Google Scholar
  3. [3]
    Zhang, O., Zerva, A. and Zhang, D.W., ‘Stiffness matrix adjustment using incomplete measured modes’,AIAA Journal 35(5) (1997) 917–919.MATHGoogle Scholar
  4. [4]
    Kim, H.M. and Bartkowicz, T.J., ‘Damage detection and health monitoring of large space structures’,Journal of Sound and Vibration 27(7) (1993) 12–17.Google Scholar
  5. [5]
    Berman, A. and Nagy, E.J., ‘Improvement of a large analytical model using test data’,AIAA Journal 21 (8) (1983) 1168–1173.CrossRefGoogle Scholar
  6. [6]
    Ignizio, J.P., ‘Goal Programming and Extensions’ (Lexington Books, 1976).Google Scholar
  7. [7]
    Roitman, N. and Viero, P.F., ‘Identification of damages in offshore platforms: an application of some methods using eigenvectors’, Proceedings of the 15th International Modal Analysis Conference, vol. 1, Orlando, 1997, 1124–1131.Google Scholar
  8. [8]
    Ewins, D.J., ‘Modal Testing: Theory and Practice’, (John Wiley and Sons Inc., New York, 1984).Google Scholar
  9. [9]
    Andrade, R.F.M., ‘Development of a system for the experimental determination of frequency response functions using single and multiple excitation’, D. Sc. Thesis, COPPE/UFRJ, Rio de Janeiro, 1997 (in Portuguese).Google Scholar
  10. [10]
    Richardson, M.H. and Formenti, D.L., ‘Parameter estimation from frequency response measurements using rational fraction polynomials’, Proceedings of the 1st International Modal Analysis Conference, vol. 1, Orlando, 1982, 167–186.Google Scholar
  11. [11]
    El-Sayed, M.E.M., Ridgely, B.J. and Sandgren, E., ‘Nonlinear structural optimization using goal programming’,Computer and Structures 32 (1) (1989) 69–73.MATHCrossRefGoogle Scholar
  12. [12]
    El-Sayed, M.E.M. and Jang, T.S., ‘Structural optimization using unconstrained nonlinear goal programming algorithm’,Computer and Structures 52 (4) (1994) 723–727.MATHCrossRefGoogle Scholar
  13. [13]
    Schniederjans, M.J., ‘Linear Goal Programming’, (Petrocelli Books, NJ, 1984).MATHGoogle Scholar
  14. [14]
    Powell, M.J.D., ‘An efficient method for finding the minimum of a function of several variables without calculating derivatives’,Computer Journal 7 (1964) 155–162.MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Vanderplaats, G.N., ‘Numerical Optimization Techniques for Engineering Design: with Applications’ (McGraw-Hill, New York, 1984).MATHGoogle Scholar

Copyright information

© RILEM 2003

Authors and Affiliations

  • N. Roitman
    • 1
  • C. Magluta
    • 1
  • R. S. Oliveira
    • 1
  1. 1.COPPE/UFRJ-Prog de Eng. CivilRio de JaneiroBrasil

Personalised recommendations