Materials and Structures

, Volume 35, Issue 6, pp 332–337 | Cite as

Behavior of fiber reinforced concrete-filled tubular columns in compression

  • G. Campione
  • L. La Mendola
  • L. Sanpaolesi
  • N. Scibilia
  • G. Zingone
Scientific Reports

Abstract

Experimental compression tests on steel tubular columns filled with plain concrete and fiber reinforced concrete are carried out. For each type of column three different lengths are considered in order to point out the influence of slenderness on the ductility in compression. The experimental investigations presented here have emphasized the improvement in ductility capacity obtained when fiber reinforced concrete is utilised instead of plain concrete. Moreover, the results obtained stress that the lateral displacements due to global instability are drastically reduced.

Keywords

Bear Capacity Local Buckling Plain Concrete Global Instability Composite Column 

Résumé

Des essais expérimentaux de compression ont été réalisés sur des colonnes constituées de tubes circulaires en acier remplis de béton simple ou renforcé par des fibres. Pour chaque typologie de colonne, on a consideré trois longueurs différentes, afin de mettre en évidence l'influence de l'élancement sur la ductilité en compression. Les recherches expérimentales présentées dans cet article ont montré l'amélioration de la capacité de ductilité obtenue quand le béton renforcé de fibres est utilisé à la place du béton simple. En outre, les résultats obtenus mettent en évidence que les déplacements latéraux consécutifs à l'instabilité globale sont considérablement réduits.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bridge, R. and Webb, J., ‘Thin walled circular concrete filled steel tubular columns’, Proceedings of an Engineering Foundation Conference in Composite Construction in Steel and Concrete II, Publ. ASCE (1992) 634–649.Google Scholar
  2. [2]
    Schneider, S. P., ‘Axially loaded concrete-filled steel tubes’,ASCE Journal of Structural Engineering 124 (10) (1998) 1125–1138.CrossRefGoogle Scholar
  3. [3]
    Campione, G., Scibilia, N. and Zingone, G., ‘Strength and ductility of hollow circular steel columns filled with fibre reinforced concrete’, Proceedings of the Second International Conference on Advances in Steel Structures, Hong Kong, China, 1 (1999) 413–420.Google Scholar
  4. [4]
    Campione, G., Mindess, S., Scibilia, N. and Zingone, G., ‘Compressive behaviour of circular steel columns filled with fiber reinforced concrete: experimental investigation and comparison with EC4 code’,Costruzioni Metalliche 5 (1999) 41–48.Google Scholar
  5. [5]
    Kodur, V. K. R. and Lie, T. T., ‘Fire resistance of hollow steel columns filled with steel fibre-reinforced concrete’, in ‘Fiber Reinforced Concrete. Modern Developments’, The University of British Columbia, Vancouver, Canada, Ed. N. Banthia, S. Mindess, (1995) 289–302.Google Scholar
  6. [6]
    Ghasemian, M. and Schmidt, L. C., ‘Curved circular hollow section (CHS) steel struts infilled with higher-strength concrete’,ACI Structural Journal 96 (2) (1999) 275–281.Google Scholar
  7. [7]
    Campione, G., La Mendola, L. and Zingone, G., ‘Strength and ductility of high strength fibre reinforced concrete circular columns subjected to eccentric loads’ Proceedings of 11th European Conference Earthquake Engineering, CD-rom T2/12, Ed. P. Bish, P. Labbé & A. Pecher, Paris (1998).Google Scholar
  8. [8]
    Campione, G., Mindess, S., Scibilia, N. and Zingon, G., ‘Strength of hollow circular steel sections filled with fibre-reinforced concrete’,Can. J. Civ. Eng. 27 (2000) 364–372.CrossRefGoogle Scholar
  9. [9]
    Campione, G., Mindess, S. and Zingone, G., ‘Compressive stress-strain behavior of normal and high strength carbon-fiber concrete reinforced with steel spirals’,ACI Materials Journal 91 (1) (1999): 27–34.Google Scholar
  10. [10]
    Eurocode 3, ‘Steel structures’, European Committee for Standardization (CEN), ENV1-1 (1994).Google Scholar
  11. [11]
    Eurocode 4, ‘Common unified rules for composite steel and concrete structures,’ European Committee for Standardization (CEN), ENV 1-1 (1994).Google Scholar
  12. [12]
    Manual of Steel Construction: Load and resistance factor design (LRFD) 2nd Ed., Am. Inst. of Steel Constr. Chicago, I1 (1994).Google Scholar
  13. [13]
    CSA, ‘Limit states design of steel structures’, Standard CSA S16.1-94, Canadian Standards Association, Rexdale, Ont. (1994).Google Scholar

Copyright information

© RILEM 2002

Authors and Affiliations

  • G. Campione
    • 1
  • L. La Mendola
    • 1
  • L. Sanpaolesi
    • 2
  • N. Scibilia
    • 1
  • G. Zingone
    • 1
  1. 1.Dipartimento di Ingegneria Strutturale e GeotecnicaUniversità degli Studi di PalermoPalermoItaly
  2. 2.Dipartimento di Ingegneria StrutturaleUniversità degli Studi di PisaPisaItaly

Personalised recommendations