Skip to main content
Log in

Changes in pore structure and mercury contact angle of hardened cement paste depending on relative humidity

  • List of Papers
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Hardened cement paste (hcp) is a porous heterogeneous material consisting of dispersed particles like Calcium Silicate Hydrates (C-S-H). These are of micron to nanometer size forming pores on a nanometer scale. Thus, hcp can be regarded as a colloidal system. Surface forces play a dominant role. Adsorbed water molecules interact with the surface. Capillary condensation occurs in the pores below bulk conditions acting in form of capillary and disjoning forces. All these forces are able to alter the structure and properties of the hardened cement paste depending on the moisture content. Pore size distributions were measured with mercury intrusion porosimetry on hcp specimens, which had been prestored over the entire range of relative humidity. Swelling and shrinkage of hcp tubes were also determined. The pore size distribution is corrected for each humidity step regarding the particular porosity, contact angle and volume change. The pore size distribution as a function of relative humidity is nonlinear and characterized by an extreme value in the medium range of humidity.

Résumé

La pâte de ciment durcie est un matériau poreux hétérogène consistant de particules dispersées comme les silicates de calcium hydratés (CSH). Ce sont des pores formés à l'échelle nanométrique allant de la taille du micron à celle du nanomètre. La pâte de ciment durcie peut être considérée comme un système colloïdal. Les forces de surface y jouent un rôle dominant. Les molécules d'eau adsorbées interagissent avec la surface. La condensation capillaire se produit, sous conditions macroscopiques, dans les mésopores. Elle est dominée par les forces capillaires et de disjonction. Toutes ces forces sont capables d'altérer la structure et les propriétés de la pâte de ciment durcie en fonction de sa teneur en humidité. La distribution de la taille des pores a été mesurée à l'aide de la porosimétrie par intrusion de mercure sur des spécimens de pâte de ciment durcie, entreposés à différent degrés d'humidité relative.

Le retrait et le gonflement de tubes de pâte de ciment durcie ont aussi été déterminés. La distribution de la taille des pores pour chaque degré d'humidité a été corrigée en fonction de la porositè particulière, de l'angle de contact et des changements de volume. La distribution de la taille des pores en fonction de l'humidité relative n'est pas linéaire et est caractérisée par une valeur extrême pour une humidité moyenne.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Powers, T. C., ‘Structure and physical properties of hardened cement paste’,Journal of the American Ceramic Society 41 (1) (1958) 1–6.

    Article  Google Scholar 

  2. Brunauer, S., Emmet, P. H. and Teller, E., ‘Adsorption of gases in multimolecular layers’,J. Am. Chem. Soc. 60 (1938) 309–319.

    Article  Google Scholar 

  3. Brunauer, S., ‘A discussion of the helium flow results of R.F. Feldman’,Cement. Concrete Research 2 (4) (1972) 489–492.

    Article  Google Scholar 

  4. Beaudoin, J. J., ‘Effect of humidity and porosity on fracture of hardened Portland cement’,Cement Concrete Research 12 (1982) 705–716.

    Article  Google Scholar 

  5. Beaudoin, J. J. and Feldman, R. F., ‘Stresses and strains in the hardened cement paste-Water system’,Cement Concrete Research 14 (1984) 231–237.

    Article  Google Scholar 

  6. Beaudoin, J. J., Feldman, R. F. and Tumidajski, P. J., ‘Pore structure of hardened Portland cement pastes and its influence on properties’,Advn. Cem. Bas. Mat. 1 (1994) 224–236.

    Article  Google Scholar 

  7. Litvan, G. G. and Meyers, R. E., ‘Surface area of cement paste conditioned at various relative humidities’,Cement Concrete Research 13 (1983) 49–60.

    Article  Google Scholar 

  8. Feldman, R. F. and Sereda, P. J., ‘Model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties’,Mater. Constr. 1 (7) (1968) 509–520.

    Article  Google Scholar 

  9. Setzer, M. J., ‘Interaction of water with hardened cement paste’, (S. Mindess, Ed.), Conf. Advances in cementions materials, Ceramic Transactions 16, Wester-ville, Amer. Cer. Soc. (1991) 415 ff.

  10. Setzer, M. J., ‘The Munich model—An example for modern materials science in civil engineering’, in: Gerdes, A.: Advances in Building Materials Science—Research and Application, AEDIFICATIO Publishers, Freiburg and Untersuchungen (1996) 3 ff.

    Google Scholar 

  11. Wittmann, F. H., ‘Fundamentals of a model for the description of characteristic properties of concrete (Grundlagen eines Modells zur Beschreibung charakteristischer Eigenschaften des Betons)’,Deutscher Ausschuss für Stahlbeton 290 (1977) 43–101 (in German).

    Google Scholar 

  12. Derjaguin, B. V., Churaev, N. V. and Muller, V. M., ‘Surface Forces’, Consultants Bureau, NY and London, 1987.

    Google Scholar 

  13. Adolphs, J. and Setzer, M. J., ‘A Model to describe adsorption isotherms’,J. Colloid Interface Sci. 180 (1996) 70–76.

    Article  Google Scholar 

  14. Churaev, N. V., Setzer, M. J. and Adolphs, J., ‘Influence of surface wettability on adsorption isotherms of water vapor’,J. Colloid Interface Sci. 197 (1998) 327–333.

    Article  Google Scholar 

  15. Churaev, N. V. and Adolphs, J., ‘The influence of wetting films on capillary condensation in model capillary-porous bodies’,Colloid Journal 62 (4) (2000) 495–498.

    Google Scholar 

  16. Churaev, N. V., Starke, G. and Adolphs, J., ‘Isotherms of capillary condensation influenced by formation of adsorption films-1. Calculation for model cylindrical and slit pores’,J. Colloid Interface Sci. 221 (2000) 246–253.

    Article  Google Scholar 

  17. Gregg, S. J. and Sing, K. S. W., ‘Adsorption, Surface Area and Porosity’, (Academic Press, London, 1982).

    Google Scholar 

  18. Moscou, L. and Lub, S., ‘Practical use of mercury porosimetry in the study of porous solids’,Powder Technology 29 (1981) 45–52.

    Article  Google Scholar 

  19. Washburn, E. W., Proc. Nat. Acad. Sc.7 (1921) 115ff.

    Article  Google Scholar 

  20. Liabastre, A. A. and Orr, C., ‘An evaluation of pore structure by mercury penetration’,J. Colloid Interface Sci. 64 (1) (1978) 1–18.

    Article  Google Scholar 

  21. Kloubek, J., ‘Hysteresis in porosimetry’,Powder. Technology 29 (1981) 63–73.

    Article  Google Scholar 

  22. Zheng, L. and Winslow, D., ‘Sub-distributions of pore size: a new approach to correlate pore structure with permeability’,Cement and Concrete Research 25 (4) (1995) 769–778.

    Article  Google Scholar 

  23. Good, R. and Mikhail, R. S., ‘The contact angle in mercury intrusion porosimetry’,Powder Technology 29 (1981) 53–62.

    Article  Google Scholar 

  24. Adolphs, J. and Setzer, M. J., ‘Influence of moisture on the mesoporous structure of hardened cement paste (Einfluß der Feuche auf die Mesoporenstruktur von Zementstein)’, GDCh-Monographie 11, Building Chemistry Workshop Munich, Germany 1997, (1998) 178–180 (in German).

  25. German Standard DIN 50008: ‘Constant climates above salt solutions (Konstantklimate über wässrigen Lösungen)’, Feb. 1981 (in German).

  26. Tröger, J., Lunkwitz, K. and Bürger, W., ‘Determination of the surface tension of microporous membranes using contact angle measurements’,J. Colloid Interface. Sci. 194 (1997) 281–286.

    Article  Google Scholar 

  27. Shi, D. and Winslow, D. N., ‘Contact angle and damage during mercury intrusion into cement paste’,Cement Concrete Research 15 (1985) 645–654.

    Article  Google Scholar 

  28. Thomas, J. J., Jennings, H. M. and Allen, A. J., ‘Determination of the neutron scattering contrast of hydrated Portland cement paste using H2O/D2O exchange’,Advn. Cem. Bas. Mat. 7 (1998) 119–122.

    Article  MATH  Google Scholar 

  29. Powers, T. C., Copland, L. E., Hayes, J. C. and Mann, H. M., ‘Permeability of Portland cement paste’,J. Amer. Concr. Inst. 26 (3) (1954) 285–296.

    Google Scholar 

  30. Parrott, L. J., ‘Effect of drying history upon the exchange of porewater with methanol and upon subsequent methanol sorption behaviour in hydrated alite paste’,Cement Concrete Research 11 (4) (1981) 651–658.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. M. J. Setzer is a RILEM Senior Member and the Chairman of the RILEM Technical Committee 176-IDC: ‘Internal damage of concrete due to frost action’ and participates in the work of RILEM Technical Committee 178-TMC: ‘Testing and modelling chloride penetration in concrete’. ACBM Center (Northvestern University) is a RILEM Titular Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adolphs, J., Setzer, M.J. & Heine, P. Changes in pore structure and mercury contact angle of hardened cement paste depending on relative humidity. Mat. Struct. 35, 477–486 (2002). https://doi.org/10.1007/BF02483135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02483135

Keywords

Navigation