Skip to main content
Log in

Long-time concrete-composite interface characterization for reliability prediction of RC beam strengthened with FRP

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

It is technologically possible to strengthen steel reinforced structures by applying external bonded carbon epoxy composite. The durability and the performance of those reinforcements directly depend on the rheological behavior of concrete-composite interface. From tensile shear thermostimulated tests performed on the interface, we propose a methodology to evaluate the allowable shear stress of the interface by taking into account the effects of time and temperature.

Résumé

Il est technologiquement possible de renforcer des ouvrages en béton armé présentant des comportements pathologiques préoccupants en stratifiant les faces extérieures, de l'ouvrage avec des matériaux composites carbone-époxy. La durabilité et la fiabilité de ces renforcements sont tributaires, pour une large part, de la connaissance du comportement rhéologique de l'interface composite-béton. À partir d'essais de fluage thermo-stimulés en traction-cisaillement de l'interface, nous développons une méthodologie théorico-expérimentale pour estimer les contraintes de cisaillement admissibles du joint de colle en prenant en compte les effets, du temps et de la température.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Af :

composite area (mm2)

Ac :

concrete area (mm2)

aTt :

shift factor time

bf:

width of the composite (mm)

D(t,T):

compliance as a function of time and temperature

Ec :

concrete Young's modulus (MPa)

Ef :

composite Young's modulus

f(T), g(T), ai, bi, ad, ai:

rheological parameters

Gadh :

shear modulus (MPa)

G0, G, η1, η2:

rheological parameters (MPa)

G1 :

initial shear modulus (MPa)

L:

anchorage length (mm)

N:

load (N)

sadh :

thickness of the adhesive layer

T, T0 :

test and reference temperature (°C)

Tg :

glass transition temperature (°C)

Uc, U:

displacement in concrete and in composite (mm)

w:

constant

δγ12 :

creep rate (m/m/hours)

Δl1 :

average displacement in the adhesive layer (mm)

Δl2 :

composite displacement (mm)

εc, εf :

strain in concrete and composite (m/m)

γadh :

average shear strain (m/m)

τave :

mean shear stress (MPa)

τlave :

initial average shear stress (MPa)

τadh,d :

allowable limit shear stress value (MPa)

τ(X):

shear stress distribution along x axis of the adhesive (MPa)

τ0 :

initial shear stress (MPa)

References

  1. Resse, C. et Venuat, M., ‘Projection of mortar and concrete’ (only available in French), Techniques et applications bâtiment et TP, (1981).

  2. L'Hermite, R. L. and Bresson, J., ‘Concrete reinforced with glued plates’, Proceedings of International RILEM Symposium on synthetic resins in building constructions, Paris, (1967) 175–203.

  3. Meier, U., Deuring M., Meier, H. and Schwegler, G., ‘Strenthening of structures with CFRP laminates: research and applications in Switzerland’, Proceedings of ACMBS'1, Canada, (1992) 243–251.

  4. Triantafillou, T., ‘Shear strengthening of reinforced concrete beams using expoxy-bonded FRP’,Composites ACI Structural Journal 95 (1998) 107–115.

    Google Scholar 

  5. Varastehpour, H. and Hamelin, P., ‘Structural behaviour of reinforced concrete beams strengthened by epoxy bonded FRP plate’, Proceedings of FRPRCS'2, Belgium, (1995) 559–567.

  6. Varastehpour, H. and Hamelin, P., ‘Analysis and study of failure mechanism of RC beam strengthened with FRP plates’, Proceedings of ACMBS'2, (1996) 527–536.

  7. Carfagna, C., Apicella, A. and Nicolais, L., ‘The effect of the prepolymer composition of amino-hardened epoxy resins on the water plasticization’,Polymer Science 27 (1982), 105–112.

    Google Scholar 

  8. Beaudoin, Y. and Neale, K. W., ‘Wet dry action on the bond between composites materials and reinforced concrete beams’, Proceedings of CDCC 98, Sherbrooke, Canada, (1998) 537–547.

  9. M. Karbhari, V. and Seible, F., ‘Design consideration for the use of fiber reinforced polymeric composites’, Division of structural engineering, San Diego, CA. 1998.

    Google Scholar 

  10. Täljsten, B., ‘Strengthening of beams by plates bonding’,Journal of Materials in Civil Engineering 9 (4), (1997) 206–212.

    Article  Google Scholar 

  11. Japanese Concrete Institute ‘Report II of research Committee on Continuous fiber reinforced concrete’,Japanese Concrete Institute 5 (1998).

  12. Täljsten, B., ‘Defining anchor lengths of steel and CFRP plates bonded to concrete’,International Journal of Adhesives 17 (4) (1997) 319–327.

    Article  Google Scholar 

  13. Bizindavyi, L. and Neale, K. W., ‘Transfert lengths and bond strength for composites bonded to concrete’,Journal of Composites for Construction 3 (4) 153–160.

  14. Chajes, M. J. and Finch, W. W. Jr. ‘Bond and force transfer of composite material plates bonded to concrete’,ACI structural journal 93 (2) (1996) 208–217.

    Google Scholar 

  15. Ferrier, E. and Hamelin, P., ‘Concrete beams reinforced by fibre-reinforced plastics: the effect of temperature on the adhesive layer’,Composite Science and Technology 61 (3), (2001) 425–431.

    Article  Google Scholar 

  16. Avril, S., Hamelin, P., Surrel, Y. and Vautrin, A., ‘Caractérisation par une méthode de grille de la fissuration de poutres en béton armé réparées par matériaux composites’,Photomécanique (2000).

  17. Williams, M. L., Landel, R. F. and Ferry, J. D.,Journal of the American Chemical Society 77 (1955), 3701–3715.

    Article  Google Scholar 

  18. Brinson, L. C. and Gates, T. S., ‘Effects of physical aging on long-term creep behavior of polymers and polymer matrix composites’,International Journal of Solid and Structure 32 (1995) 827–846.

    Article  MATH  Google Scholar 

  19. Miyano, Y., Mc Murray, M. K., Kitade, N., Nakada, M. and Mohri, M., ‘Loading rate and temperature dependance of flexural behavior of unidirectional pitch-based CFRP Laminate’,Composites 26 (10) (1995), 713–717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. Patrice Hamelin is a RILEM Senior Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrier, E., Hamelin, P. Long-time concrete-composite interface characterization for reliability prediction of RC beam strengthened with FRP. Mat. Struct. 35, 564–572 (2002). https://doi.org/10.1007/BF02483125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02483125

Keywords

Navigation