Skip to main content
Log in

Investigation of strain transfer to a sensor protection system embedded in concrete using finite element analysis

  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Optical fibre-based sensor systems are being used increasingly in civil engineering applications where structural integrity monitoring is of interest or concern. This paper reports on an optimisation scheme for an optical fibre-based sensor protection system designed to protect and enhance the strain-transfer characteristic when it is embedded in concrete. The sensor protection system consisted of a stainless steel tube with specified flange designs. Three flange designs were considered: disc, cone and inverted cone. Non-linear finite element analysis incorporating contact logic was performed to select and optimise the shape and dimensions of the flange. The analysis showed high stress concentrations in the vicinity of the flanges. However, this effect was localised and was not transmitted to the intended location of the sensor. The results showed that all three flange designs were effective but the 5 mm diameter disc-shaped flange gave the best results in terms of the magnitude and symmetry of the shear stress at the tube-concrete interface.

Résumé

Les systèmes de capteurs à fibres optiques sont de plus en plus utilisés dans des applications de génie civil, où la surveillance, de l'intégrité structurale est concernée. Cet article rend compte du procédé d'optimisation d'un système de protection par capteurs à fibres optiques conçu pour protéger et mettre en valeur la caractéristique du transfert de contrainte lorsqu'il est encastré dans du béton. Ce système de protection par capteurs est composé d'un tube en acier inoxydable avec des formes de brides déterminées. Trois formes de brides ont été prises en considération: disque, cône et cône inversé. Une analyse non linéaire par éléments finis incorporant une logique de contact a été réalisée afin de choisir et d'optimiser la forme et les dimensions de la bride. Cette analyse a montré de fortes concentrations de contraintes à proximité des brides. Cependant, cet effet a été localisé et n'a pas été transmis à l'emplacement prévu du capteur. Les résultats ont prouvé que chacune des trois formes de bride était pertinente mais que la bride en forme de disque de 5 millimètres de diamètre a donné les meilleurs résultats en termes d'ampleur et de symétrie de la contrainte de cisaillement à l'interface tube-béton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Fs :

force in steel bar

Ss :

stress in steel bar

Sbu :

ultimate anchorage bond stress

So :

ultimate concrete stress

Sb :

anchorage bond stress

References

  1. Choquet, P., Leroux, R. and Juneau, F., ‘New Fabry-Perot Fibre Optic Sensors for Structural and Geotechnical Monitoring Applications’, Transp. Res. Rec. 1596, Transportation Research Board, Washington DC, 1997, 39–44.

    Google Scholar 

  2. Melle, S. M. Liu, K. and Measures, R. M., ‘Strain Sensing using a Fibre Optic Bragg Grating’,SPIE Proceedings, Vol. 1588, 1991, 255–263.

    Google Scholar 

  3. Mendez, A. and Morse, T. F., ‘Overview of Optical Fibre Sensors Embedded in Concrete’,Fibre Optic Smart Structures and Skins, SPIE Vol. 1798, 1992, 205–216.

    Google Scholar 

  4. Measures, R. M., ‘Advances towards fibre optic based smart structures’,Optical Engineering 31 (1992) 33–47.

    Article  Google Scholar 

  5. De Vries, M., Arya, V., Meller, S., Masri, S. F. and Claus, R. O., ‘Implementation of EFPI-based optical-fibre sensor instrumentation for the NDE of concrete structures’,Cement and Concrete Composites (UK) (1997) 59–68.

  6. Maaskant, R., Alavie, T. and Measures, R. M., ‘Fibre-optic Bragg Grating sensors for bridge monitoring’,Cement and Concrete Composites 19 (1997) 21–33.

    Article  Google Scholar 

  7. Leung, C. K. Y. and Wang, X., ‘Debonding and calibration shift of optical fibre sensors in concrete’,Journal of Engineering Mechanics 126 (3) (2000) 300–307.

    Article  Google Scholar 

  8. Hillemeier, B., Habel, W. R. and Hofmann, D., ‘Deformation measurements of mortars at early ages and of large concrete components on site by means of embedded fibre-optic micro-strain sensors’,Cement and Concrete Composites (UK)19 (1997) 81–102.

    Article  Google Scholar 

  9. Quirion, M. and Ballivy, G., ‘Concrete strain monitoring with Fabry-Perot fibre-optic sensor’,Journal of Materials in Civil Engineering 12 (3) (Aug 2000) 254–261.

    Article  Google Scholar 

  10. British Standards Institute (BSI), ‘Structural use of concrete, Part 1: Code of practice for design and construction’, BS 8110: Part 1: BSI, London, 1985.

    Google Scholar 

  11. Kong, F. K. and Evans, R. H., ‘Reinforced and Pre-stressed Concrete’, Third Edition (Chapman and Hall, 1996, ISBN 0412 37760 8).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameed, A., Fernando, G.F., Hetherington, J.G. et al. Investigation of strain transfer to a sensor protection system embedded in concrete using finite element analysis. Mat. Struct. 35, 557–563 (2002). https://doi.org/10.1007/BF02483124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02483124

Keywords

Navigation