Skip to main content
Log in

Correlation of the therapeutic effect of activated tumor-draining lymph node cells with specific interferon-γ production in vitro

  • Original Articles
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

It has been established that lymphocytes obtained from tumor-draining lymph nodes (DLN) are sensitized to the tumor antigen in vivo. Moreover, after being activated in vitro, these cells can be utilized for adoptive immunotherapy. In the present study, DLN cells, obtained from C57BL/6 mice with fibrosarcoma (MC-1), were activated and expanded with anti-CD3 monoclonal antibody followed by culture with recombinant interleukin-2 (rIL-2). These CD4 CD8+ CD25+ CD44+ T-cells showed specific antitumor efficacy to the pulmonary micrometastases of an autologous tumor, against which lymphokine-activated killer cells were ineffective; however, they did not show cytolytic activity in vitro. The supernatant, obtained by coculturing the activated DLN cells with MC-1 cells, exhibited the specific production of interferon-γ (IFN-γ) which was enhanced by rIL-2. The therapeutic effect of the activated DLN cells correlated with the specific IFN-γ production better than with the cytolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lafreniere R, Rosenberg SA (1985) Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 45:3735–3741

    CAS  PubMed  Google Scholar 

  2. Rosenberg SA (1988) The development of new immunotherapies for the treatment of cancer using interleukin-2. A review. Ann Surg 208:121–135

    Article  CAS  PubMed  Google Scholar 

  3. Chou T, Chang AE, Shu SY (1988) Generation of therapeutic T lymphocytes from tumor-bearing mice by in vitro sensitization. Culture requirements and characterization of immunologic specificity. J Immunol 140:2453–2461

    CAS  PubMed  Google Scholar 

  4. Shu SY, Chou T, Rosenberg SA (1987) Generation from tumor-bearing mice of lymphocytes with in vivo therapeutic efficacy. J Immunol 139:295–304

    CAS  PubMed  Google Scholar 

  5. Rosenberg SA, Spiess P, Lafreniere R (1986) A new approach to the adoptive immunotherapy of cancer with tumor-inflitrating lymphocytes. Science 233:11318–1321

    Article  Google Scholar 

  6. Spiess PJ, Yang JC, Rosenberg SA (1987) In vivo antitumor activity of tumor-infiltrating lymphocytes expanded in recombinant interleukin-2. J Natl Cancer Inst 79:1067–1075

    CAS  PubMed  Google Scholar 

  7. Tuttle TM, Inge TH, Bethke KP, McCrady CW, Pettit GR, Bear HD (1992) Activation and growth of murine tumor-specific T-cells which have in vivo activity with bryostatin 1. Cancer Res 52:548–553

    CAS  PubMed  Google Scholar 

  8. Sakai K, Chang AE, Shu SY (1990) Phenotype analyses and cellular mechanisms of the pre-effector T-lymphocyte response to a progressive syngeneic murine sarcoma. Cancer Res 50:4371–4376

    CAS  PubMed  Google Scholar 

  9. Cheever MA, Greenberg PD, Fefer A, Gillis S (1982) Augmentation of the anti-tumor therapeutic efficacy of long-term cultured T lymphocytes by in vivo administration of purified interleukin 2. J Exp Med 155:968–980

    Article  CAS  PubMed  Google Scholar 

  10. Yoshizawa H, Chang AE, Shu S (1991) Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 147:729–737

    CAS  PubMed  Google Scholar 

  11. Yoshizawa H, Sakai K, Chang AE, Shu SY (1991) Activation by anti-CD3 of tumor-draining lymph node cells for specific adoptive immunotherapy. Cell Immunol 134:473–479

    Article  CAS  PubMed  Google Scholar 

  12. Crossland KD, Lee VK, Chen W, Riddell SR, Greenberg PD, Cheever MA (1991) T cells from tumor-immune mice nonspecifically expanded in vitro with anti-CD3 plus IL-2 retain specific function in vitro and can eradicate disseminated leukemia in vivo. J Immunol 146:4414–4420

    CAS  PubMed  Google Scholar 

  13. Tuttle TM, McCrady CW, Inge TH, Salour M, Bear HD (1993) Gamma-interferon plays a key role in T-cell-induced tumor regression. Cancer Res 53:833–839

    CAS  PubMed  Google Scholar 

  14. Barth RJ, Mule JJ, Spiess PJ, Rosenberg SA (1991) Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med 173:647–658

    Article  CAS  PubMed  Google Scholar 

  15. Maraskovsky E, Chen WF, Shortman K (1989) IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells. J Immunol 143:1210–1214

    CAS  PubMed  Google Scholar 

  16. Donohue JH, Rosenstein M, Chang AE, Lotze MT, Robb RJ, Rosenberg SA (1984) The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol 132:2123–2128

    CAS  PubMed  Google Scholar 

  17. Whittington R, Faulds D (1993) Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs 46:446–514

    Article  CAS  PubMed  Google Scholar 

  18. Takeuchi M, Kimoto M, Suzuki I, Nomoto K (1983) Effect of BCG (bacillus Calmette Guerin) sensitization on the generation of tumor specific killer T cells (in Japanese). Gan To Kagaku Ryoho (Jpn J Cancer Chemother) 10:1980–1986

    CAS  PubMed  Google Scholar 

  19. Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA (1987) Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci USA 84:1374–1378

    Article  CAS  PubMed  Google Scholar 

  20. Devos R, Plaetinck G, Cheroutre H, Simons G, Degrave W, Tavernier J, Remaut E, Fiers W (1983) Molecular cloning of human interleukin 2 cDNA and its expression inE. coli. Nucleic Acids Res 11:4307–4323

    Article  CAS  PubMed  Google Scholar 

  21. Wexler H (1966) Accurate identification of experimental pulmonary metastases. J Natl Cancer Inst 36:641–645

    CAS  PubMed  Google Scholar 

  22. Tyring S, Klimpel GR, Fleischmann WJ, Baron S (1982) Direct cytolysis by partially-purified preparations of immune interferon. Int J Cancer 30:59–64

    Article  CAS  PubMed  Google Scholar 

  23. Fox BA, Spiess PJ, Kasid A, Puri R, Mule JJ, Weber JS, Rosenberg SA (1990) In vitro and in vivo antitumor properties of a T-cell clone generated from murine tumor-infiltrating lymphocytes. J Biol Response Modifiers 9:499–511

    CAS  Google Scholar 

  24. Flyer DC, Burakoff SJ, Faller DV (1985) Retrovirus-induced changes in major histocompatibility complex antigen expression influence susceptibility to lysis by cytotoxic T lymphocytes. J Immunol 135:2287–2292

    CAS  PubMed  Google Scholar 

  25. Zoller M, Strubel A, Hammerling G, Andrighetto G, Raz A, Ben ZA (1988) Interferon-gamma treatment of B16 melanoma cells: opposing effects for non-adaptive and adaptive immune defense and its reflection by metastatic spread. Int J Cancer 41:256–266

    Article  CAS  PubMed  Google Scholar 

  26. Weber JS, Rosenberg SA (1988) Modulation of murine tumor major histocompatibility antigens by cytokines in vivo and in vitro. Cancer Res 48:5818–5824

    CAS  PubMed  Google Scholar 

  27. Issekutz TB (1990) Effects of six different cytokines on lymphocyte adherence to microvascular endothelium and in vivo lymphocyte migration in the rat. J Immunol 144:2140–2146

    CAS  PubMed  Google Scholar 

  28. Pace JL, Russell SW, Torres BA, Jonson HM, Gray PW (1983) Recombinant mouse gamma interferon induces the priming step in macrophage activation for tumor cell killing. J Immunol 130:2011–2013

    CAS  PubMed  Google Scholar 

  29. Gemlo BT, Palladino MJ, Jaffe HS, Espevik TP, Rayner AA (1988) Circulating cytokines in patients with metastatic cancer treated with recombinant interleukin 2 and lymphokine-activated killer cells. Cancer Res 48:5864–5867

    CAS  PubMed  Google Scholar 

  30. Giannella G, Pelosi TE, Carlini P, Habetswallner D, Montesoro E, Camagna A, Calzini V, Ruggeri EM, Arena MG, Masciulli, Bulgarini D, Samoggia P, Di Folco S, Petrillo G, Sofra MG, Boccoli G, Mastroberardino G, Calabrest F, Testa U, Peschle C (1989) Fluctuations of plasma beta 2-microglobulin, soluble interleukin 2 receptor and interferon-gamma concentrations after adoptive immunotherapy with high-dose interleukin 2 and lymphokine-activated killer cells. Immunobiology 178:305–315

    CAS  PubMed  Google Scholar 

  31. Nishihara K, Miyatake S, Sakata T, Yamashita J, Kikuchi H, Kawade Y, Zu Y, Namba Y, Hanaoka M, Watanabe Y (1988) Augmentation of tumor targeting in a line of glioma-specific mouse cytotoxic T-lymphocytes by retroviral expression of mouse gamma-interferon complementary DNA. Cancer Res 48:4730–4735

    CAS  PubMed  Google Scholar 

  32. Miyatake S, Nishihara K, Kikuchi H, Yamashita J, Namba Y, Hanaoka M, Watanabe Y (1990) Efficient tumor suppression by glioma-specific murine cytotoxic T lymphocytes transfected with interferon-gamma gene. J Natl Cancer Inst 82:217–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sameshima, S., Sakai, K., Nagawa, H. et al. Correlation of the therapeutic effect of activated tumor-draining lymph node cells with specific interferon-γ production in vitro. Surg Today 29, 55–62 (1999). https://doi.org/10.1007/BF02482971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482971

Key Words

Navigation