Journal of comparative physiology

, Volume 104, Issue 1, pp 71–78 | Cite as

Anaerobic production of volatile fatty acids in the sea musselMytilus edulis L.

  • J. H. Kluytmans
  • P. R. Veenhof
  • A. de Zwaan
Article

Summary

  1. 1.

    Mytilus edulis L. accumulates VFA during anaerobiosis.

     
  2. 2.

    Propionic acid is formed in equal amounts as succinate (26 μmol g−1 dry weight), together with small amounts of acetate (2 μmol g−1 dry weight) during 72 h under N2.

     
  3. 3.

    Under aerobic conditions acetate is the only free VFA present in appreciable amounts (12 μmol g−1 dry weight).

     
  4. 4.

    About 8 μmol g−1 dry weight of esterified VFA are present in total lipid extracts.

     
  5. 5.

    No significant increase in esterification to glycerol-3-phosphate takes place during 72h of anoxia.

     

Keywords

Succinate Volatile Fatty Acid Mytilus Edulis Intermediary Metabolism Parasitic Helminth 

Abbreviations used

VFA

volatile fatty acids

PEGA

polyethyleneglycoladipate

I.D.

internal diameter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blažka, P.: The anaerobic metabolism of fish. Physiol. Zool.31, 117–128 (1958)Google Scholar
  2. Brand, T. von: Biochemistry of parasites. New York: Academic Press 1966Google Scholar
  3. Bueding, E.: Carbohydrate metabolism of Schistosoma mansoni. J. gen. Physiol.33, 475–495 (1950)PubMedCrossRefGoogle Scholar
  4. Bueding, E.: Comparative aspects of carbohydrate metabolism. Fed. Proc.21, 1039–1046 (1962)PubMedGoogle Scholar
  5. Burton, D. T., Spehar, A. M.: A re-evaluation of the anaerobic end products of fresh water fish exposed to environmental hypoxia. Comp. Biochem. Physiol.40A, 945–954 (1971)CrossRefGoogle Scholar
  6. Folch, J., Lees, M., Sloane Stanley, G. A.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem.226, 497–509 (1957)PubMedGoogle Scholar
  7. Hochachka, P. W., Mustafa, T.: Invertebrate facultative anaerobiosis. Science178, 1056–1060 (1972)PubMedGoogle Scholar
  8. Hochachka, P. W., Fields, J., Mustafa, T.: Animal life without oxygen: Basic biochemical mechanisms. Amer. Zool.13, 543–555 (1973)Google Scholar
  9. Hohorst, H. J.: L-(+)-lactat. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Methoden der enzymatischen Analyse, H. U. Bergmeyer, ed, p. 1425–1429. Weinheim: Verlag Chemie 1970Google Scholar
  10. Kmetec, E.: Spectrophotometric method for the enzymatic microdetermination of succinic acid. Analyt. Biochem.16, 474–480 (1966)CrossRefGoogle Scholar
  11. Köhler, P., Hanselmann, K.: Intermediary metabolism in Dicrocoelium dendriticum (Trematoda). Comp. Biochem. Physiol.45 B, 825–845 (1973)Google Scholar
  12. Köhler, P., Stahel, O. F.: Metabolic end products of anaerobic carbohydrate metabolism of Dicrocoelium dendriticum (Trematoda). Comp. Biochem. Physiol.43B, 733–741 (1972)Google Scholar
  13. Mahadevan, V., Zieve, L.: Determination of volatile free fatty acids of human blood. J. Lipid Res.10, 338–341 (1969)PubMedGoogle Scholar
  14. Mehlman, B., Brand, T. von: Further studies on the anaerobic metabolism of some fresh water snails. Biol. Bull.100, 199–205 (1951)PubMedGoogle Scholar
  15. Pandian, T. J.: Mechanisms of Heterotrophy. In: Marine Ecology, vol. II, Part 1, O. Kinne, ed., p. 61–258. London, New York: Wiley-Interscience 1974Google Scholar
  16. Read, C. P.: Intermediary Metabolism of Flatworms. In: Chemical Zoology, vol. II (Marcel Florkin, Bradley T. Scheer, eds.), p. 328–389. New York, London: Academic Press 1968Google Scholar
  17. Saz, H. J.: Comparative energy metabolism of some parasitic helminths. J. Parasit.56, 634–642 (1970)PubMedCrossRefGoogle Scholar
  18. Saz, H. J.: Facultative anaerobiosis in the invertebrates: pathways and control systems. Amer. Zool.11, 125–135 (1971)Google Scholar
  19. Saz, H. J., Lescure, O. L.: The functions of phosphoenolpyruvate carboxykinase and malic enzyme in the anaerobic formation of succinate by Ascaris lumbricoides. Comp. Biochem. Physiol.30, 49–60 (1969)PubMedCrossRefGoogle Scholar
  20. Stokes, T., Awapara, J.: Alanine and succinate as end-products of glucose degradation in some invertebrates. Comp. Biochem. Physiol.25, 883–892 (1968)CrossRefGoogle Scholar
  21. Williamson, D. H.: L-alanine. Bestimmung mit Alanine-Dehydrogenase. In: Methoden der enzymatischen Analyse, II. (H. U. Bergmeyer, ed.), p. 1634–1635. Weinheim: Verlag Chemie 1970Google Scholar
  22. Zoeten, L. W. de, Posthuma, D., Tipker, J.: Intermediary metabolism of the liver fluke Fasciola hepatica. Hoppe Seyler's Z. Physiol. Chem.350, 683–690 (1969)PubMedGoogle Scholar
  23. Zwaan, A. de, Zandee, D. I.: The utilization of glyeogen and accumulation of some intermediates during anaerobiosis in Mytilus edulis L. Comp. Biochem. Physiol.43B, 47–54 (1972)Google Scholar
  24. Zwaan, A. de, Marrewijk, W. J. A. van: Anaerobic glucose degradation in the sea mussel Mytilus edulis L. Comp. Biochem. Physiol.44B, 429–439 (1973)Google Scholar
  25. Zwaan, A. de, Bont, A. M. T. de, Kluytmans, J. H. F. M.: Metabolic adaptations on the aerobic—anaerobic transition in the sea mussel Mytilus edulis L. Proc. 9th Eur. mar. biol. Symp. 121–138 (1975)Google Scholar
  26. Zwaan, A. de, Marrewijk, W. J. A. van, Holwerda, D. A.: Anaerobic carbohydrate metabolism in the sea mussel Mytilus edulis L. Neth. J. Zool.23, 225–228 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • J. H. Kluytmans
    • 1
  • P. R. Veenhof
    • 1
  • A. de Zwaan
    • 1
  1. 1.Laboratory of Chemical Animal PhysiologyState University of UtrechtUtrechtThe Netherlands

Personalised recommendations