Advertisement

Journal of comparative physiology

, Volume 104, Issue 1, pp 1–11 | Cite as

Functional properties of hemoglobins in the teleostTilapia grahami

  • G. Lykkeboe
  • K. Johansen
  • G. M. O. Maloiy
Article

Summary

The oxygen binding properties ofTilapia grahami hemoglobins have been investigated. The whole blood hemolysate possesses at 35°C a high oxygen affinity (P 50∼ 4.0 mmHg). The O2Hb equilibrium is moderately affected by the ionic strenght chloride concentration) of the hemoglobin solution, while in contrast the temperature sensitivity of the O2Hb equilibrium was very high (ΔH=−20.0 kcal.mole−1).

Tilapia hemoglobin separated into 7 main fractions having nearly similar Bohr factors (−0.42<ø<−0.59) in a pH range from 7.2 to 7.6. The Bohr factor andn-value of the composite hemoglobins fell within the range for the individual Hb fractions. Addition of the organic nucleoside triphosphates, ATP and GTP, both occurring inTilapia grahami red cells, caused a marked increase inP 50 as well asn-values, with GTP having an effect nearly twice that of ATP on oxygen affinity.

Tilapia grahami lives in conditions of high alkalinity (9.6<pH<10.5), high temperature (T max≅43°C) and variable O2 concentration. The results are discussed in relation to hemoglobin function in this habitat.

Keywords

Chloride Concentration Oxygen Affinity Organic Phosphate Diffusion Chamber Human Hemoglobin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonini, E., Amiconi, G., Brunori, M.: The effect of anions and cations on the oxygen equilibrium of human hemoglobin. In: Oxygen affinity of hemoglobin and red cell acid base status (M. Rørth and P. Astrup, ed.) (Alfred Benson Symp. IV) p. 121–129. Copenhagen: Munksgaard 1972Google Scholar
  2. Antonini, E., Brunori, M.: Hemoglobin and myoglobin in their reactions with ligands. In: Frontiers of biology (E. Antonini and M. Brunori, eds.), p. 436. Amsterdam-London: North-Holland Publishing Company 1971Google Scholar
  3. Bunn, H. F., Ransil, B. J., Chao, A.: The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J. biol. Chem.246, 5273–5279 (1971)PubMedGoogle Scholar
  4. Chanutin, A., Curnish, R. R.: Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys.121, 96–102 (1967)PubMedCrossRefGoogle Scholar
  5. Coe, M. J.: The biology ofTilapia grahami Boulenger in Lake Magadi, Kenya. Acta trop. (Basel)23, 146–177 (1966)Google Scholar
  6. Eddy, F. B., Morgan, R. I. G.: Some effects of carbon dioxide on the blood of rainbow troutSalmo gairdneri Richardson. J. Fish. Biol. 1, 361–373 (1969)CrossRefGoogle Scholar
  7. Geoghegan, W. D., Poluhowich, J. J.: The major erythrocytic organic phosphates of the American eel,Anguilla rostrata. Comp. Biochem. Physiol.49B 281–290 (1974)Google Scholar
  8. Gillen, R. G., Riggs, A.: Structure and function of the hemoglobins of the carp,Cyprinus carpio. J. biol. Chem.247, 6039–6046 (1972)PubMedGoogle Scholar
  9. Grigg, G. C.: Some respiratory properties of the blood of four species of antarctic fishes. Comp. Biochem. Physiol.23, 139–148 (1967)PubMedCrossRefGoogle Scholar
  10. Grigg, G. C.: Respiratory function of blood in fishes. In: Chemical zoology, vol. VIII, (M. Florkin and B. Scheer, eds.), P. 331–368. New York: Academic Press 1974Google Scholar
  11. Johansen, K.: Airbreathing in fishes. In: Fish physiology, vol. IV (W. S. Hoar and D. J. Randall, eds.), p. 361–411. New York: Academic Press 1970Google Scholar
  12. Johansen, K., Lenfant, C.: A comparative approach to the adaptability of O2-Hb affinity. In: Oxygen affinity of hemoglobin and red cell acid-base status (M. Rørth and P. Astrup, eds.) (Alfred Benson Symp.) Copenhagen: Munksgaard 1972Google Scholar
  13. Johansen, K., Maloiy, G. M. O., Lykkeboe G.: A fish in extreme alkalinity. Respir. Physiol.24, 159–162 (1975)PubMedCrossRefGoogle Scholar
  14. Krogh, A., Leitch, I.: The respiratory function of blood in fishes. J. Physiol. (Lond.)52, 288 (1919)Google Scholar
  15. Poluhowich, J. J.: Adaptive significance of multiple hemoglobins. Physiol. Zool.45, 215–222 (1972)Google Scholar
  16. Root, R. W.: The respiratory function of the blood of marine fishes. Biol. Bull.61, 427–456 (1931)Google Scholar
  17. Sick, H., Gersonde, K.: Method for continuous registration of O2-binding curves of haemo-proteins by means of a diffusion chamber. Analyt. Biochem.32, 362–376 (1969)PubMedCrossRefGoogle Scholar
  18. Walaas, E.: Stability constant of metal complexes with mononucleotides. Acta chem. scand.12, 528 (1958)CrossRefGoogle Scholar
  19. Weber, R.E. Lykkeboe, G., Johansen, K: Physiological properties of eel haemoglobin; hypoxic acclimation, phosphate effects and multiplicity. J. exp. Biol. (in press) 1976Google Scholar
  20. Wood, S. C., Johansen, K.: Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature (Lond.) New Biol.237, 278–279 (1972)Google Scholar
  21. Wyman, J.: Linked functions and reciprocal effects in hemoglobin: A second look. In: Advances in protein chemistry (C. B. Anfinsen, M. L. Anson, J. T. Edsall, F. M. Richards, eds.) Advanc. Protein Chem.19, 223–286 (1964)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • G. Lykkeboe
    • 1
  • K. Johansen
    • 1
  • G. M. O. Maloiy
    • 2
  1. 1.Department of ZoophysiologyUniversity of AarhusAarhusDenmark
  2. 2.Department of Animal PhysiologyUniversity of NairobiNairobiKenya

Personalised recommendations