Skip to main content
Log in

Evolution of pore solution chemistry, electro-osmosis and rebar corrosion rate induced by realkalisation

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The electrochemical repair methods known as realkalisation or chloride removal, although increasingly applied, still require fundamental understanding. In the case of realkalisation, the development of an electro-osmosis is claimed, which would introduce the carbonate ions into the concrete matrix; however this electroosmosis has still not been demonstrated. In the present paper, a laboratory trial is reported showing the different processes occurring throughout the experiment. In carbonated concrete, a noticeable increase in the volume of the catholyte could be identified, with the subsequent incrase in the amount of carbonate, and volume decrease in the anolyte, which has been taken as an indicative of electro-osmosis. Variations of pH and the concentration of different ions have been monitored enabling the deduction that OH, Na+ are driven by the electrical field while K+ and CO 3 are moved by other types of driven forces. Calculation of the potential zeta of carbonated concrete, as well as the theoretical electrical charge needed for realkalisation, is given. Finally, the corrosion rate values measured two months further after finishing the tests showed that the steel does not seem to be repassivated, although this result has to be interpreted with precaution due to the amount of oxides reduced on the steel during the treatment.

Résumé

Bien que les méthodes électrochimiques de réparation de réalcalinisation ou d'extraction des chlorures sont de plus en plus utilisées, on ne possède pas de connaissances fondamentales sur les méthodes. Dans le cas de la réalcalinisation, une électro-osmose capable d'introduire des carbonates dans la matrice du béton se produit. Pourtant, cette électro-osmose n'a pas encore pu être démontrée. Dans ce travail, on décrit un essai de laboratoire qui montre les différents processus qui se déroulent pendant l'éxpérience. On a pu identifier une importante augmentation du volume du catholite et par conséquent l'augmentation des carbonates et la diminution du volume de l'anolite. Ces événements ont été considérés comme indicatifs d'une électro-osmose. Les changements de pH et des autres ions présents ont permits de déduire que les OH et Na+ sont dirigés par le champ électrique alors que K+ et CO 3 le sont par d'autres mécanismes. De même, on présente le calcul du potentiel zeta du béton carbonaté et de la charge électrique théorique nécessaire pour la réalcalinisation. Finalement, la vitesse de corrosion mesurée pendant deux mois après la fin de l'expérience semble indicquer que l'acier est actif. Ce résultat doit être interprété avec précaution en raison de la quantité d'oxydes de l'acier qui sont réduits pendant le traitement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polder, R. and Van Der Hondel, H. J., ‘Electrochemical realkalisation and chloride removal of concrete. State of the art, laboratory and chloride removal of concrete. State of the art, laboratory and field experience, Proc. of RILEM Conference ‘Rehabilitation of concrete structures’ Melbourne, (1992) 135–147.

  2. Andrade, C., ‘Calculation of chloride diffusion coefficients in concrete from ionic migration measurements’,Cement and Concrete Research 23 (3) (1993) 724–742.

    Article  Google Scholar 

  3. Vennesland, Ø., Proc. Nordisk Beton Kongress, Odense, Senmark, (1987).

  4. Page, C. L. and Yu, S. W., ‘The effect of chloride removal on alkali-silica reaction’, SCI Conference ‘Electrochemical Repair of Reinforced Concrete’, London, 16 September (1993).

  5. Tritthart, J., Pettersson, K. and Sorensen, B., ‘Electrochemical removal of chloride from hardened cement paste’,Cement and Concrete Research 23 (1993) 1095–1104.

    Article  Google Scholar 

  6. Bertolini, L., Yu, S. W. and Page, C. L., ‘Effects of electrochemical chloride extraction on chemical and mechanical properties of hydrated cement paste’,Advances in Cement Research 8 (31) (July 1996) 93–100.

    Google Scholar 

  7. Miller, J. B., ‘Structural aspects of high powered electro-chemical treatment of reinforced concrete’, Proceedings of the International Conference on Corrosion and Protection of Steel in Concrete, 24–28 July, Sheffield (1994).

  8. Polder, R., ‘Electroosmosis in concrete. Theory, basic and field data and preliminary tests’, TNO-report 93-BT-R1423. (1993).

  9. Polder, R., Walker, R. and Page, C. L., ‘Electrochemical chloride removal tests of concrete cores from a coastal structure’, Proceedings of the International Conference on Corrosion and Protection of Steel in Concrete, 24–28 July., Sheffield (1994).

  10. Banfill, P. F. G., ‘Features of the mechanism of re-alkalisation and desalination treatments for reinforced concrete’, Proceedings of the International Conference on ‘Corrosion and Protection of Steel in Concrete’, 24–28 July, Sheffield, (1994).

  11. Andrade, C., Sanjuán, M. A. and Alonso, C., ‘Measurement of chloride diffusion coefficient from migration tests’, The NACE Annual Conference and Corrosion Show., paper no. 319 (1993).

  12. Andrade, C. and Gonzalez, J. A., ‘Quantitative corrosion rate of reinforcing steel embedded in concrete using polarization resistance measurements’,Werkstoffs und korrosion 29 (1978) 515–519.

    Article  Google Scholar 

  13. Page, C. L., Short, N. R. and Tarras, A., ‘Diffusion of chloride ions in hardened cement pastes’,Cement and Concrete Research 11 (3) (1981) 395–406.

    Article  Google Scholar 

  14. Goto, S. and Roy, D. M., ‘Diffusion of ions through hardened cement paste’,11 (1981) 751–757.

    Article  Google Scholar 

  15. Uchikawa, U., Proc. 8th Int. Congr. on Chemistry of Cement, Río de Janeiro, Brasil, I, (1986) 249–280.

  16. Goto, S. and Daimon, M., Proc. 8th Int. Congr. on Chemistry of Cement, Río de Janeiro, Brasil, VI, (1986) 405–409.

  17. Hunter, R. J., ‘Zeta Potential in Colloid Science. Principles and Applications’ Academic Press Limited, (1981).

  18. Nägele, E., ‘The zeta-potential of cement’,Cement and Concrete Research 15 (1985) 453–462.

    Article  Google Scholar 

  19. Nägele, E., ‘The zeta-potential of cement—part II: Effect of pH value’,16 (1986) 853–863.

    Article  Google Scholar 

  20. Nägele, E., ‘The zeta-potential of cement—part III: The nonequilibrium double layer on cement’.17 (4) (1987) 573–580.

    Article  Google Scholar 

  21. Bertolini, L., Bolzoni, F., Elsener, B., Pedeferri, P. and Andrade, C., ‘La realcalinización y la extracción electroquímica de los cloturos en las construcciones de hormigón armado’ (The realcalinisation and electrochemical chloride extraction in reinforced concrete structures) (available only in Spanish),Materiales de Construcción 46 (244) (1996) 45–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

She is the Chairlady of RILEM TC 154-EMC: ‘Electrochemical techniques for measuring metallic corrosion’ and of RILEM TC TMC: ‘Testing and modelling chloride penetration in concrete’ She is also Director of CSIC, a Titular Member, Dr Castellote is a member of RILEM TC TMC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, C., Castellote, M., Sarría, J. et al. Evolution of pore solution chemistry, electro-osmosis and rebar corrosion rate induced by realkalisation. Mat. Struct. 32, 427–436 (1999). https://doi.org/10.1007/BF02482714

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482714

Keywords

Navigation