A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices

  • Ya. G. Sinai
  • A. B. Soshnikov
Article

Keywords

Random Matrice Correlate Pair Common Edge Simple Random Walk Typical Path 

References

  1. 1.
    E. Wigner, “Characteristic vectors of bordered matrices with infinite dimensions,” Ann. Math.,62, 548–564 (1955).MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Wigner, “On the distribution of the roots of certain symmetric matrices,” Ann. Math.,67, 325–328 (1958).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    V. A. Marchenko and L. A. Pastur, “The distribution of the eigenvalues in some ensembles of random matrices,” Mat. Sb.,72, 507–536 (1967).MATHMathSciNetGoogle Scholar
  4. 4.
    L. A. Pastur, “On the spectrum of random matrices,” Teor. Mat. Fiz.,10, 102–112 (1972).MathSciNetGoogle Scholar
  5. 5.
    L. A. Pastur, “The spectra of random self-adjoint operators,” Usp. Mat. Nauk,28, 3–64 (1973).MATHMathSciNetGoogle Scholar
  6. 6.
    L. Arnold, “On the asymptotic distribution of the eigenvalues of random matrices,” J. Math. Anal. Appl.,20, 262–268 (1967).MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    L. Arnold, “On Wigner's semicircle law for the eigenvalues of random matrices,” Z. Wahrscheinlichkeitstheorie Verw. Gebiete,19, 191–198 (1971).MATHCrossRefGoogle Scholar
  8. 8.
    K. W. Wachter, “The strong limits of random matrix spectra for sample matrices of independent elements,” Ann. Probab.,6, No. 1, 1–18 (1978).MATHMathSciNetGoogle Scholar
  9. 9.
    V. L. Girko, The Spectral Theory of Random Matrices [in Russian], Nauka, Moscow, 1988.Google Scholar
  10. 10.
    Z. D. Bai, “Convergence rate of expected spectral distributions of large random matrices. I. Wigner Matrices,” Ann. Probab.,21, 625–648 (1993).MATHMathSciNetGoogle Scholar
  11. 11.
    A. M. Khorunzhy, B. A. Khoruzhenko, L. A. Pastur, and M. V. Shcherbina, “The largen-limit in statistical mechanics and the spectral theory of disordered systems,” in: Phase Transitions and Critical Phenomena, Vol. 15 (C. Domb and J. L. Lebowitz, eds.). Academic Press, London, 1992.Google Scholar
  12. 12.
    A. M. Khorunzhy, B. A. Khoruzhenko, and L. A. Pastur, “Asymptotic properties of large random matrices with independent entries,” J. Math. Phys.,37, 5033–5059 (1996).MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Khorunzhy, “On smoothed density of states for Wigner random matrices,” Random Oper. Stochastic Equations,5, No. 2, 147–162 (1997).MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ya. Sinai and A. Soshnikov, “Central limit theorem for traces of large random symmetric matrices with independent matrix elements,” Bol. Soc. Brasil. Mat.,29, No. 1, 1–24 (1998).MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    C. Tracy and H. Widom, “On orthogonal and symplectic matrix ensembles,” Commun. Math. Phys.,177, 727–754 (1996).MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Tracy and H. Widom, “Level-spacing distribution and the Airy kernel,” Commun. Math. Phys.,159, 151–174 (1994).MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    P. J. Forrester, “The spectrum edge of random matrix ensembles,” Nucl. Phys. B,402, 709–728 (1994).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Z. Füredi and J. Komlóz, “The eigenvalues of random symmetric matrices,” Combinatorica,1, No. 3, 233–241 (1981).MATHMathSciNetGoogle Scholar
  19. 19.
    A. Boutet de Monvel and M. V. Shcherbina, “On the norm of random matrices,” Mat. Zametki,57, No. 5, 688–698 (1995).MATHMathSciNetGoogle Scholar
  20. 20.
    M. L. Mehta, Random Matrices, Academic Press, New York, 1991.MATHGoogle Scholar
  21. 21.
    O. Costin and J. L. Lebowitz, “Gaussian fluctuations in random matrices,” Phys. Rev. Lett.,75, No. 1, 69–72 (1995).CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • Ya. G. Sinai
  • A. B. Soshnikov

There are no affiliations available

Personalised recommendations