Functional Analysis and Its Applications

, Volume 32, Issue 2, pp 81–92 | Cite as

Algebraic integrability of the two-body Ruijsenaars operator

  • G. Felder
  • A. Varchenko
Article

Keywords

Meromorphic Function Difference Operator Elliptic Curve Galois Group Hyperelliptic Curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Braverman, P. Etingof, and D. Gaitsgory, Differential Galois Groups and Algebraic Integrability of Quantum Integrable Systems, alg-geom/9607012.Google Scholar
  2. 2.
    O. Chalykh and A. Veselov, “Commutative rings of differential operators and Lie algebras,” Commun. Math. Phys.,126, 597–611 (1990).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite-zone potentials and abelian varieties,” Usp. Mat. Nauk,31, 55–136 (1976); English transl. in Russ. Math. Surv.,31, 51–125 (1976).MATHMathSciNetGoogle Scholar
  4. 4.
    G. Felder and A. Varchenko, “Algebraic Bethe ansatz for the elliptic quantum groupE τ, η(sl2),” Nucl. Phys. B,480, 485–503 (1996).MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Krichever, “Algebraic curves and difference equations,” Usp. Mat. Nauk,33, No. 4, 215–216 (1978); English transl. in Russ. Math. Surv.,33, No. 4, 255–256 (1978).MATHMathSciNetGoogle Scholar
  6. 6.
    I. Krichever and S. Novikov, “Algebras of Virasoro type, Riemann surfaces and structures of the theory of solitons,” Functs. Anal. Prilozhen.,21, No. 2, 46–63 (1987); English transl. in Funct. Anal. Appl.,21, No. 2, 126–142 (1987).MATHMathSciNetGoogle Scholar
  7. 7.
    I. Krichever and A. Zabrodin, Spin Generalization of the Ruijsenaars-Schneider Model Non-Abelian 2D Toda Chain and Representations of Sklyanin Algebra,” hep-th/9505039.Google Scholar
  8. 8.
    D. Mumford, “Algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related non-linear equations,” in: Proceedings Int. Symp. Algebraic Geometry, Kyoto, 1977, pp. 115–153, Kinokumiya Book Store, Tokyo, 1978.Google Scholar
  9. 9.
    S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero-Moser systems and elliptic function identities,” Commun. Math. Phys.,110, 191–213 (1987).MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Sklyanin, “On some algebraic structures related to the Yang-Baxter equation. Representations of the quantum algebra,” Functs. Anal. Prilozhen.,17, No. 4, 34–48 (1983).MATHMathSciNetGoogle Scholar
  11. 11.
    E. Verlinde, “Fusion rules and modular transformations in 2D conformal field theory,” Nucl. Phys. B,300 [FS22], 360–376 (1987).MathSciNetGoogle Scholar
  12. 12.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1915.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • G. Felder
  • A. Varchenko

There are no affiliations available

Personalised recommendations