Materials and Structures

, Volume 34, Issue 7, pp 426–432 | Cite as

Short-term corrosion rate measurement of OPC and HPC reinforced concrete specimens by electrochemical techniques

  • M. A. El-Gelany
Technical Reports

Abstract

This paper presents the results of a laboratory investigation in which the applicability of Tafel plot and linear polarization techniques in short-term corrosion rate measurement of reinforcing bar in concrete has been evaluated. One hundred and four OPC and HPC concrete cylinders, fifty-two of each kind and each cylinder with a single embedded reinforcing bar, have been subjected to various controlled conditions, and the corrosion rate of each specimen has been monitored. Results indicate that sodium chloride concentration plays an effective role on the propagation of corrosion,i.e., the higher the NaCl concentration, the higher the corrosion rate.

Keywords

Corrosion Rate Silica Fume Polarization Resistance Electrochemical Technique Chloride Penetration 

Résumé

Ce papier présente les résultats d'une recherche en laboratoire sur l'utilité du diagramme de Tafel et de la technique de polarisation linéaire dans la mesure de la variation de la vitesse de corrosion d'une armature dans le béton. Cent-quatre cylindres en béton dont cinquante-deux de bétons ordinaires et cinquante-deux de béton à haute performance, chacun avec une barre d'acier à l'intérieur ont été soumis à plusieurs conditions contrôlées, et la vitesse de corrosion de chaque échantillon a été mesurée. Les résultats montrent que la concentration du chlorure de sodium (NaCl) joue un rôle important dans le développement de la corrosion, c'est-à-dire que plus la concentration de NaCl augmente, plus la vitesse de corrosion augmente.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lockington, D., Parlange, J.-Y. and Dux, P., ‘Sorptivity and the estimation of water penetration into unsaturated concrete’,Mater. Struct. 32 (June 1999) 342–347.CrossRefGoogle Scholar
  2. [2]
    Verbeck, J., ‘Mechanisms of corrosion of steel in concrete’, Corrosion of Metals in Concrete, SP-49, American Concrete Institute, Detroit, 1975, 21–38.Google Scholar
  3. [3]
    Hansson, C. M., ‘Comments on electrochemical measurements of the rate of corrosion of steel in concrete’,Cement and Concrete Research 14 (4) (July 1984) 574–584.CrossRefGoogle Scholar
  4. [4]
    Hansson, I. L. H. and Hansson, C. M., ‘Electrical resistivity measurements of Portland cement based materials’,Cement and Concrete Research 13 (5) (Sept. 1983) 675–683.CrossRefGoogle Scholar
  5. [5]
    Whittington, H. W., McCarter, J. and Forde, M. C., ‘The conduction of electricity through concrete’,Magazine of Concrete Research (London)33 (114) (Mar. 1981) 48–60.CrossRefGoogle Scholar
  6. [6]
    Hansson, I. L. H. and Hansson, C. M., ‘Ion-conduction in cement-based materials’,Cement and Concrete Research 15 (2) (Mar. 1985) 201–212.CrossRefGoogle Scholar
  7. [7]
    Stratful, R. F., ‘Criteria for cathodic protection of bridge decks’, Corrosion of Reinforcement in Concrete construction, Society of Chemical Industry/Ellis Horwood Ltd., London, 1983, pp. 287–331.Google Scholar
  8. [8]
    Maslehhuddin, M., Al-Mana, A., Saricimen, H. and Shamim, M., ‘Corrosion of reinforcing steel in concrete-containing slag or pozzolans’,Cement, Concrete and Aggregates 12 (1) (Summer 1990) 24–33.CrossRefGoogle Scholar
  9. [9]
    Gonzalez, J. A., Molina, A., Escudero, M. L. and Andrade, C., ‘Errors in the electrochemical evaluation of very small corrosion rates-I. Polarization resistance method applied to corrosion of steel in concrete’,Corrosion Science 25 (10) (Oct. 1985) 917–930.CrossRefGoogle Scholar
  10. [10]
    Gonzalez, J. A., Molina, A., Escudero, M. L. and Andrade, C., ‘Errors in the electrochemical evaluation of very small corrosion rates-II. Other electrochemical techniques applied to corrosion of steel in concrete’,Corrosion Science 25 (7) (July 1985) 519–530.CrossRefGoogle Scholar
  11. [11]
    Al-Tayyib, A. and Khan, M. ‘Corrosion rate measurement of reinforcing steel in concrete by electrochemical techniques’,ACI 85 (3) (May–June 1988) 172–177.Google Scholar
  12. [12]
    Dean, S. W. Jr., ‘Electrochemical methods of corrosion testing’, Electrochemical Techniques for Corrosion, National Association of Corrosion Engineers, Houston, 1977, 52–60.Google Scholar
  13. [13]
    Stern, M. and Geary, A. L., ‘Electrochemical polarization, No. 1 Theoretical analysis of the shape of polarization curves’,Journal of Electrochemical Society 104 (1) (Jan. 1957) 56.Google Scholar
  14. [14]
    Mansfeld, F., ‘Polarization resistance measurement— Experimental procedure and evaluation of data’, Electrochemical Techniques for Corrosion, National Association of Corrosion Engneers, Houston, 1977, 18–26.Google Scholar
  15. [15]
    Schiessl, P. and Raupach, N., ‘Influence of blending agents on the rate of corrosion of steel in concrete’, 2nd International Seminar, Swedish Council for Building Research, 1989, 205–214.Google Scholar
  16. [16]
    Ellis, W. E. Jr., Rigg, E. H. and Butler, W. B., ‘Comparative results of utilization of fly ash, silica fume and GGBFS in reducing the chloride permeability of concrete’, SP-126 (American Concrete Institute), Detroit, MI, 1991, 443–458.Google Scholar
  17. [17]
    Al-Amoudi, O. S. B.et al., ‘Prediction of long term corrosion resistance of plain and blended cement concretes’,ACI Mater. J. 90 (1993) 564–571.Google Scholar
  18. [18]
    Stuvo, ‘Concrete in hot countries’, Report (Stuvo, Dutch member group of FIP), The Netherlands, 1986, 8–12.Google Scholar
  19. [19]
    Hobbs, D. W., ‘Chloride ingress and chloride-induced corrosion in reinforced concrete members’, Proceedings of a Conference on Corrosion of Reinforcement in Concrete Construction, Cambridge, 1988, 124–135.Google Scholar
  20. [20]
    Costa, A. and Appleton, J., ‘Chloride penetration into concrete in marine environment—Part I: Main parameters affecting chloride penetration’,Mater. Struct. 32 (May 1999) 252–259.CrossRefGoogle Scholar
  21. [21]
    Imam, T. I., ‘Corrosion prevention for steel reinforcement of concrete’, M.Sc. Thesis, Ain Shames University, Egypt, June 1989.Google Scholar
  22. [22]
    Tuutti, K., ‘Service life of structures with regard to corrosion of embedded steel’, Performance of Concrete in Marine Environment, ACI SP-65, Detroit, 1985, 223–236.Google Scholar

Copyright information

© RILEM 2001

Authors and Affiliations

  • M. A. El-Gelany
    • 1
  1. 1.School of Civil & Structural EngineeringNanyang Technological UniversitySingapore

Personalised recommendations