Materials and Structures

, Volume 34, Issue 5, pp 293–301 | Cite as

Numerical modelling of volume changes at early ages-Potential, pitfalls and challenges

  • K. van Breugel
Scientific Papers


For quantification of early deformations of hardening cement-based systems a number of conceptual and numerical models have been proposed. In this contribution some aspects of these models with be discussed and evaluated with respect to the mechanisms that are considered to be responsible for volume and length changes at early ages. Emphasis will be on systems hydrating under sealed conditions. The fact that volume changes at early ages, and more in particular autogenous shrinkage, should be considered as the response of a continuously changing system is discussed. These changes concern at least the pore system and the state of moisture in the pore system. Numerical models should, therefore, be able to simulate the evolution of the pore system with progress of the hydration process explicitly. Parallel with the modelling of the evolution of the pore system, c.q. the microstructure, the state of stress and associated deformations should be considered. The potential of numerical simulation models to deal with this coupled problem is discussed. Pitfalls encountered when developing and validating numerical simulation models will be addressed and discussed. The potential of numerical models is illustrated with examples.


Length Change Ettringite Cement Paste Hydration Product Pore System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Un grand nombre de modèles conceptuels et numériques ont été proposés pour la quantification des déformations précoces relatives au durcissement de systèmes à base cimentaire. Dans cette contribution quelques aspects de ces modèles seront abordés et évalués au regard des mécanismes que l'on considère comme responsables des changements de volume et de dimension aux jeunes âges. L'accent sera mis sur les systèmes en cours d'hydratation dans des conditions étanches. L'article examine le fait que les changements de volume aux jeunes âges, et plus particulièrement dans le retrait endogène, devraient être considérés comme la réponse des systèmes changeant constamment. Ces changements concernent au moins le système des pores et l'état d'humidité du système poreux. Les modèles numériques devraient, par conséquent, être en mesure de simuler explicitement l'évolution du système poreux avec la progression de l'hydratation. Un parallèle avec la modélisation de l'évolution du système poreux, à savoir la microstructure, l'état de tension et autres déformations associées, devrait être établi. Le potentiel des modèles de simulation numériques pour traiter de ce problème couplé est présenté. Les problèmes rencontrés en développant et en validant ces modèles de simulation numériques seront exposés et débattus. Plusieurs exemples viennent illustrer le potentiel des modèles numériques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Vitruvius, ‘De architectura libri decem’ (Manual architecture), Durch translation by T. Peters, (Publ. Athenaeum—Polak & van Gennep, Amsterdam, 1999).Google Scholar
  2. [2]
    Bažant, Z. P. and Wittmann, F. H., ‘Creep and shrinkage in concrete structures’, (John Wiley & Sons, New York, 1982).Google Scholar
  3. [3]
    Steinour, H. H.,Ibid. Rahman, A. A.,Cement & Concrete Research 12 (1) (1982) 33–38.CrossRefGoogle Scholar
  4. [4]
    Odler, I., Yudenfreud, M., Skalny, J. and Brunauer, S., ‘Hardened Portland cement pastes of low porosity: III. Degree of hydration. Expansion of paste. Total porosity’,Cement & Concrete Research 2 (1972) 463–480.CrossRefGoogle Scholar
  5. [5]
    Roy, D. M., Gouda, G. R. and Bobrowski, A., ‘Very high strength cement pastes prepared by hot pressing and othe high pressure techniques’,Cement & Concrete Research 2 (3) (1972) 349–366.CrossRefGoogle Scholar
  6. [6]
    Tezuka, Y.,et al., Hydration characteristics and properties of mixtures of cement and high content of calcium’, in proc. 8th Int. Congress on ‘Chemistry of Cement’, Rio de Janeiro, Vol. II (1986) 323–329.Google Scholar
  7. [7]
    Budnikov, P. P. and Strelkov, M. I., ‘Some recent concepts on Portland cement hydration and hardening’, in Proc. Symp. on ‘Structure of Portland cement paste and concrete’, (ACI Special Report 90, 1966) 447–464.Google Scholar
  8. [8]
    Baroghel-Bouny, V., ‘Experimental investigation of self-desiccation in high-performance materials—Comparison with drying behaviour’, in Proc. Int. Workshop on ‘Self-desiccation and its importance in concrete technology’, Lund (1997) 72–87.Google Scholar
  9. [9]
    Powers, T. C., ‘Mechanisms of shrinkage and reversible creep of hardening cement paste’ in Proc. Int. Symp. ‘Structure of Concrete and its behaviour under load’, London (Cem. & Concr. Ass., London, 1965) 319–344.Google Scholar
  10. [10]
    Persson, B., ‘Creep and shrinkage of young or mature HPC’, in Proc. 5th Int. Symp. on ‘Utilization of high strength/high performance concrete’, Sandefjord, June (1999) 1272–1281.Google Scholar
  11. [11]
    Setter, N. and Roy, D. M., ‘Mechanical features of chemical shrinkage of cement paste’,Cement & Concrete Research,8 (5) (1978) 623–634.CrossRefGoogle Scholar
  12. [12]
    Davis, H. E., ‘Autogenous volume change of concrete’, Proc. of ASTM, 40 (1940) 1102–1110.Google Scholar
  13. [13]
    Traetteberg, A., Ramachandran, V.S. and Grattan-Bellow, P.E., ‘A study of the microstructure and hydration characteristics of tricalcium silicate in the presence of calcium chloride’,Cement & Concrete Research 4 (2) (1974) 203–221.CrossRefGoogle Scholar
  14. [14]
    Chatterji, S., ‘Physical properties and structural models for Portland cement paste’, in Proc. Int. Conf. on ‘Hydraulic cement paste: Their structure and properties’, Sheffield (1976) 223–226.Google Scholar
  15. [15]
    van Breugel, K., ‘Simulation of hydration and formation of structure in hardening cement-based materials’, PhD Thesis, Delft (1991).Google Scholar
  16. [16]
    Hammer, T. A., ‘Test method for linear measurement of autogenous shrinkage before setting’, in ‘Autogenous shrinkage of concrete’, Proc. Int. Workshop, Hiroshima, 1998 (E&FN Spon, 1999) 143–154.Google Scholar
  17. [17]
    Brunauer, S., Kantro, D. L. and Weise, C. H., ‘The surface energy of tobermorite’,Can. Journal of Chemistry 37 PCA Res. Dept. Bull 105 (1959) 714–724.CrossRefGoogle Scholar
  18. [18]
    Wittmann, F. H., ‘Determination of physical properties of cement paste’, (in German),Deutscher Ausschuss für Stahlbeton, book 232 (1974).Google Scholar
  19. [19]
    Gibbs, J. W., ‘Collected Works’, New Haven, Yale University Press (1957).Google Scholar
  20. [20]
    Wittmann, F. H., ‘Fundamental of a model for the description of characteristic properties of concrete’, (in German),Deutscher Ausschuss für Stahlbeton, book 290 (1977) 42–101.Google Scholar
  21. [21]
    Wittmann, F. H., ‘The structure of hardened cement paste—A basis for a better understanding of the materials properties’, in Proc. of Conference on ‘Hydraulic cement paste: Their structure and properties’, Sheffield, April (1976) 96–117.Google Scholar
  22. [22]
    Bangham, D. H. and Fakhoury, N., ‘The swelling of charcoal’, Proc. Royal Society of London, (1931) 81–89.Google Scholar
  23. [23]
    Hiller, K. H., ‘Strength reduction and length changes in porous glass caused by water vapour adsorption’,J. Applied Physics 35 (1964) 1622–1628.CrossRefGoogle Scholar
  24. [24]
    Setzer, M. J., ‘The Munich model—An example for modern materials science in civil engineering’, in ‘Advances in Building Materials Science’, (EADIFICATIO Publishers, 1996) 3–16.Google Scholar
  25. [25]
    Hua, C., Acker, P. and Ehrlacher, A., ‘Analyses and models of the autogenous shrinkage of hardening cement paste: 1. Modelling at macroscopic scale’,Cement and Concrete Research 25 (7) (1995) 1457–1468.CrossRefGoogle Scholar
  26. [26]
    Carol, I. and Bažant, Z. P., ‘Solidification theory: A rational and effective framework for constitutive modelling of ageing viscoelasticity’, in Proc. 5th RILEM Symposium on ‘Creep and Shrinkage of Concrete’, Barcelona, (1993) 177–188.Google Scholar
  27. [27]
    Ghosh, R. S., ‘A hypothesis on mechanisms of maturing creep of concrete’,Mater. Struct. 6 (31) (1973) 23–26.Google Scholar
  28. [28]
    Lokhorst, S. J., ‘Deformational behaviour of concrete influenced by hydration-related changes of the microstructure’, Technical Report, TU Delft (1996).Google Scholar
  29. [29]
    Hua, C., Acker, P. and Ehrlacher, A., ‘Analyses and models of the autogenous shrinkage of hardening cement paste: II. Modelling at scale of cement grains’,Cement and Concrete Research 27 (2) (1997) 245–258.CrossRefGoogle Scholar
  30. [30]
    Radjy, F. and Sellevold, E. J., ‘A phenomenological theory for the t-Method of pore structure analysis: I. Slit-shapedpores’,J. of Colloid and Interface Science 39 (2) (1972) 367–378.CrossRefGoogle Scholar
  31. [31]
    Sellevold, E. J. and Radjy, F., ‘A phenomenological theory for the t-Method of pore structure analysis: II. Circular cylindrical pores’,J. of Colloid and Interface Science 39 (2) (1972) 379–388.CrossRefGoogle Scholar
  32. [32]
    Bournazel, J. P., Moranville-Regourd, M. and Hormain, H., ‘Early age concrete strength: a phenomenological approach to physico-chemical processes’, in Proc. No. 16, of Int. RILEM Workshop on ‘Hydration and Setting of Cements’, (E&FN Spon, 1992) 307–314.Google Scholar
  33. [33]
    Bentz, D. P., ‘Three-dimensional computer simulation of Portland cement hydration and microstructure development’,J. Am. Ceram. Soc. 80 (1) (1997) 3–21.CrossRefGoogle Scholar

Copyright information

© RILEM 2001

Authors and Affiliations

  • K. van Breugel
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations