Skip to main content
Log in

Service life prediction of concrete bridge decks repaired with bonded concrete overlays

  • Technical Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Service life predictions with respect to chloride initiated corrosion of repaired concrete bridge decks are of major concern in order to develop cost-efficient repair strategies. A service life prediction incorporates a service life criterion, a concrete cover and a method to predict the chloride ingress rate. All three topics are discussed and quantified in this paper on old concrete bridge decks repaired by water jetting and bonded steel fibre reinforced concrete overlays. The service lives for two bridge decks are estimated. The parameters used are based on comprehensive field studies of repaired decks that have been in service between five and ten years after the repairs.

The proposed method is capable of taking the distribution of covers and transport coefficients into consideration and any probabilistic level could be used. All calculations can be made by hand and no subjective decisions are needed.

The serice life with respect to chloride initiated corrosion was found to be more than 100 years for the repaired concrete bridge decks. Bonded concrete overlays constitute a durable repair alternative for deteriorated concrete bridge decks.

Résumé

En ce qui concerne la corrosion due aux chlorures, les prédictions de durée de vie en service, après rénovation, des tabliers de ponts en béton sont de première importance pour développer une stratégie de rénovation financièrement efficace. Une telle prévision est constituée d'un critère de durée de vie, d'une couverture en béton et d'une méthode pour prédire le taux de pénétration des chlorures. Ces trois aspects sont discutés et quantifiés dans cet article sur les vieux tabliers de ponts en béton, réparés par un giclage d'eau et une couverture en béton armé avec des fibres d'acier. Ensuite, les durées de vie en service de deux tabliers de ponts sont estimées. Les paramètres utilisés sont determinés à partir d'une étude d'ensemble de tabliers qui ont été en service entre cinq et dix aus après rénovation.

La méthode proposée est capable de prendre en considération la distribution de la couverture et les coefficients de transports; n'importe quel niveau de probabilité peut être utilisé. Cette méthode est facile à employer et à comprendre. Tous les calculs peuvent être faits à la main et aucune décision subjective n'est nécessaire, ce qui rend la méthode indépendante de la personne qui réalise la prédiction de durée de vie.

En ce qui concerne la corrosion due aux chlorures, la durée de vie en service a été estimée à plus de 100 ans pour les tabliers réparés. Fixer une converture de béton constitue une alternative durable pour la rénovation des tabliers de ponts en béton qui sont détériorés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Paulsson, J., ‘Effects of repairs on the remaining life of concrete bridge decks’, Bulletin No. 27, Department of Structural Engineering, Royal Institute of Technology, Stockholm, Sweden, 1997.

    Google Scholar 

  2. Paulsson, J. and Silfwerbrand, J., ‘Durability of repaired bridge deck overlays’,Concrete International 20 (2) (February 1998) 76–82.

    Google Scholar 

  3. Silfwerbrand, J. and Paulsson, J., ‘Better bonding of bridge deck overlays’,Concrete International 20 (10) (October 1998) 56–61.

    Google Scholar 

  4. Paulsson, J. and Farhang, A., ‘Measurements on the moisture state in a heavily trafficked concrete flat slab repaired with bonded concrete overlay’, Proceedings, Moisture measurements in concrete constructions exposed to temperature and moisture variations, VTT Symposium 174, Espoo 1997, 5–19.

  5. Paulsson-Tralla, J., ‘Service life of repaired concrete bridge decks’, Bulletin No. 50, Department of Structural Engineering, Royal Institute of Technology, Stockholm, Sweden, 1999.

    Google Scholar 

  6. Poulsen, E., ‘Determination of diffusivity for concrete’, Proceeding, The Service Life of Marine Concrete Structures, Cementa AB, Danderyd, Sweden, 1993, 103–124. (In Danish).

  7. Clear, K. C., ‘Time-to-corrosion of reinforcing steel in concrete slabs. V. 3: Performance After 830 Daily Salt Applications’, Report No. FHWA-RD-76-70, Federal Highway Administr., Washington, D.C., 1976.

    Google Scholar 

  8. Andersen, A. and Paulsson, J., ‘Measurements on seasonal and diurnal variations of environmental conditions surrounding a heavily trafficked bridge structure’, Proceedings, International Conference on Repair of Concrete Structures, Svolvær, Norway, 28–39, May 1997, 143–152.

  9. Crank, J., ‘Mathematics of diffusion. Clarendon Press, Oxford, 1975.

    MATH  Google Scholar 

  10. Mejlbro, L., ‘The complete solution of Fick's second law of diffusion with time-dependent diffusion coefficient and surface concentration’, Proceedings, Durability of Concrete in Saline Environment, Cementa AB, Danderyd, Sweden, 1996, 127–158.

    Google Scholar 

  11. Sandberg, P., ‘Critical evaluation of factors affecting chloride initiated reinforcement corrosion in concrete’ Report TVBM-3068, Dept of Building Technology, Lund Institute of Technology, Sweden, 1995.

    Google Scholar 

  12. Fagerlund, G., lsCalculations of the service life of concrete structures-Overview and examples’, Report TVBM-3070, Division of Building Material, Lund Institute of Technology. (In Swedish).

  13. Woltze, K., Swedish Cement and Concrete Research Institute, Stockholm, Personal communication 1997.

  14. Andersen, A., Department of Building Material, Chalmers University, Personal communication 1999.

  15. HETEK, ‘Chloride penetration into concrete-State-of-the-art’, ACCE, AEC-Chalmers-Cementa, 1997.

  16. Pettersson, K., ‘Service life of concrete structures-in a chloride environment’, Report No. 3:96, Swedish Cement and Concrete Research Institute, Stockholm, 1996. (In Swedish).

  17. Tietz, ‘Risk analysis-uses and abuses’,The Structural Engineer 76 (20) (20 October, 1998), 395–401.

    Google Scholar 

  18. BRITE/EURAM project 4062, ‘The residual service life of reinforced concrete structures’, Manual for Assessment of Residual Service Life of Reinforced Concrete Structures and Life of Publications from the Project, Edited by Fagerlund, Report TVBM-7117, September 1997.

  19. Ganwei, C., Andreasen, S. and Nielsen, M. P., ‘Membrane action tests of reinforced concrete square slabs’, Serie R, No. 273, 1991, Department of Structural Engineering, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  20. Andreasen, B. and Nielsen, M. P., ‘Dome effect in reinforced concrete slabs’, Serie R, No. 212, 1986, Department of Structural Engineering, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  21. Andreasen, B. and Nielsen, M. P., ‘Arch effect in reinforced concrete one-way slabs’, Serie R, No. 275, 1991, Department of Structural Engineering, Technical University of Denmark, Lyngby, Denmark.

    Google Scholar 

  22. Swamy, R. N. and Ali, S. A. R., ‘Punching shear behaviour of reinforced slab-column connections made with steel fibre concrete’,ACI Journal 79 (5) (May 1982) 392–406.

    Google Scholar 

  23. Swedish Bridge Code (Bronorm 94), Swedish National Road Administration, Borlänge, Sweden, 1994.

  24. Schiessel, P. and Raupach, M., ‘Laboratory studies and calculations on the influence of crack width on chloride-induced corrosion of steel in concrete’,ACI Materials Journal 94 (1) (January–February 1997) 56–62.

    Google Scholar 

  25. Fagerlund, G., ‘Freeze-thaw deterioration-Description of mechanisms’, Proceedings, Service life of concrete structures in a marine environment, Cementa AB, Danderyd, Sweden, 1992, 23–70.

    Google Scholar 

  26. BHB Material, (The Swedish Concrete Handbook-Material), 2nd edition, AB Svensk Byggtjänst and Cementa AB, Stockholm, 1994 (in Swedish).

  27. Sandberg, P., ‘Chloride initiated reinforcement corrosion in marine concrete’, Report TVBM-1015, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1998.

    Google Scholar 

  28. Fagerlund, G. and Svensson, O., ‘Durability of repair system of concrete balconies’, Report No. 2:80, Swedish Cement and Concrete Research Institute, Stockholm, 1980. (In Swedish).

    Google Scholar 

  29. Tuutti, K., ‘Corrosion of steel in concrete’, Report No. 4:82 Swedish Cement and Concrete Research Institute, Stockholm, 1982.

    Google Scholar 

  30. Rodriguez, J., Ortega, L. M. and Casal, J., ‘Load carrying capacity of concrete structures with corroded reinforcement’,Construction and Building Materials 11 (4) (1997) 239–248.

    Article  Google Scholar 

  31. Al-Khaja, W., ‘Influence of temperature and level of concrete consolidation on chloride ingress in conventional and high strength concrete’,Construction and Building Materials 11 (1) (1997) 9–13.

    Article  Google Scholar 

  32. Syed Ehtesham Hussian, Ahmad S. Al-Gahtani, and Rasheeduzzafar, ‘Chloride threshold for corrosion of reinforcement in concrete’,ACI Materials Journal 94 (6) (November–December 1996) 534–538.

    Google Scholar 

  33. Matushima, M., Tsutsumi, T., Seki, H. and Matsui, K. ‘A study of the application of reliability theory to the design of concrete cover’,Magazine of Concrete Research 50 (1) (Mar 1998) 5–16.

    Article  Google Scholar 

  34. Antonsson, J. and Forsberg, D., ‘A comparative study of concrete covers on bridges’, Degree project, E987 B, Dalarna University, School of Engineering, Borlänge, Sweden. (In Swedish).

  35. Clark, L. A., Shammas-Toma, M. G. K., Seymour, D. E., Pallet, P. F. and Marsh, B. K., ‘How can we get the cover we need?’,The Structural Engineer 75 (17) (2 September 1997) 289–296.

    Google Scholar 

  36. Clark, L. A., ‘Discussion-How can we get the cover we need?’,The Structural Engineer 76 (11) (2 June 1998) 229–231.

    Google Scholar 

  37. Pentti, M., ‘Carbonation of reinforced concrete panels—A field study’, Nordic Concrete Research, Publication No. 11, Oslo, Norway 1992, 110–122.

    Google Scholar 

  38. Swedish National Road Administration, Blue prints from microfilm, Swedish National Road Administration, Borlänge, Sweden, 1997.

    Google Scholar 

  39. Silfwerbrand, J., ‘Effects of differential shrinkage, creep and properties of the contact surface on the strength of composite concrete slabs of old and new concrete’, Bulletin No. 147, Department of Structural Mechanics and Engineering, Royal Institute of Technology, Stockholm, Sweden, 1987. (In Swedish).

    Google Scholar 

  40. Silfwerbrand, J., ‘Improving concrete bond in repaired bridge deck’,Concrete International 12 (9) (September 1990) 61–66.

    Google Scholar 

  41. Matushima, M., Seki, H. and Matsui, K., ‘A reliability approach to landing pier optimum repair level’,ACI Materials Journal 95 (3) (May–June 1998) 218–225.

    Google Scholar 

  42. Troive, S., ‘Structural LCC Design of Concrete Bridges’, Bulletin No. 41, Department of Structural Engineering, Royal Institute of Technology, Stockholm, Sweden, 1998.

    Google Scholar 

  43. Bamforth, P., ‘Double standards in design’,Concrete 33 (3) (March 1999) 33–35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note The Royal Institute of Technology is a RILEM Titular Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulsson-Tralla, J. Service life prediction of concrete bridge decks repaired with bonded concrete overlays. Mat. Struct. 34, 34–41 (2001). https://doi.org/10.1007/BF02482198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482198

Keywords

Navigation