Skip to main content
Log in

Specifying concrete for chloride environments using controlled permeability formwork

  • Technical Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The paper describes a study carried out to explore how controlled permeability formwork (CPF) can be used within existing concrete durability specifications (mix limitations) for chloride environments. Tests were carried out to consider (i) chloride diffusion rates and, under wetting and drying conditions, (ii) rates of chloride contamination build up at cover depth and (iii) reinforcement corrosion. The effects of CPF were measured against design strength, cover depth and cement type of concrete cast against ply-wood formwork (impermeable formwork—IMF). The use of CPF liner on formwork was found to significantly enhance chloride and corrosion resistance of concrete. Moreover, the results demonstrated that CPF could be used within the BS 5328 durability framework for chloride environments to allow either a 20 mm cover reduction (50 to 30 mm) at fixed design strength (40 N/mm2), or a reduction in design strength of 10 N/mm2 (50 to 40 N/mm2) at fixed cover depth (30 mm). It was additionally found for Portland cement (PC) concrete that the use of CPF gave equivalent performance to concretes containing PFA and GGBS as constituents of cement and a ternary cement comprising both materials, cast against ply-wood formwork. This suggests that the ‘trade offs’ within BS 8500 for PC/PFA and PC/GGBS cements in chloride environments, could also be permitted for CPF concrete containing PC.

Résumé

L'article décrit une étude effectuée dans le but d'explorer la façon dont le coffrage de contrôle de perméabilité (CPF) peut être utilisé dans le cadre des caractéristiques existantes de durabilité du béton (limitations de mélange) concernant des environnements de chlorure. Des essais ont été effectués pour examiner (i) les taux de diffusion de chlorure et, dans des conditions de mouillage et de séchage, (ii) les taux de contamination des ions chlorures s'accumulant à la profondeur de couverture ainsi que (iii) la corrosion de l'armature. Les effets du CPF ont été mesurés par rapport à la résistance de conception, la profondeur de couverture et le type de ciment utilisé dans le béton moulé à l'intérieur du coffrage en contre-plaqué (coffrage imperméable—FMI). L'utilisation du recouvrement du CPF sur le coffrage s'est révélée de nature à mettre en valeur de manière significative les ions chlorure et la résistance à la corrosion du béton. D'ailleurs, les résultats ont démontré que le CPF pouvait être employé dans le cadre de durabilité de la norme BS 5328 pour des environnements de chlorure pour permettre une réduction de 20 millimètres de la couverture (de 50 à 30 millimètres) à une résistance de conception fixe (40 N/mm2), ou une réduction de la résistance de conception de 10 N/mm2 (de 50 à 40 N/mm2) à une profondeur de couverture fixe (30 millimètres). On a également trouvé, pour le béton à base de ciment Portland (PC), que l'utilisation du CPF donnait des performances équivalentes à celle des bétons composés de cendres volantes (PFA) et de laitiers de hauts fourneaux granulés (GGBS) comme constituants du ciment et d'un ciment ternaire combinant les deux matériaux, moulés à l'intérieur du coffrage en contre-plaqué. Ceci suggère que les «compromis» de la norme BS 8500 concernant les ciments PC/PFA et de PC/GGBS dans des environnements de chlorure, pourraient également être autorisés pour le PC contenant le béton du CPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Price, W. F., ‘Controlled permeability formwork’, CIRIA Report C511 (2000).

  2. Taywood Engineering Ltd., ‘Guidance on the selection of measures for enhancing reinforced concrete durability’, (The Concrete Society, Crowthorne, 2000, to be published).

    Google Scholar 

  3. Skjølsvold, J., ‘Testing of concrete with and without Zemdrain liner on the formwork. Part II’, Report No STF 70, A92102, Sintef FCB, (Cement and Concrete Research Institute, Trondheim, Norway 1992).

    Google Scholar 

  4. Pallet, P. F., ‘Controlled Permeability Formwork’, (British Cement Association, London, 1993).

    Google Scholar 

  5. Basheer, P. A. M., Sha'at, A. A. and Long, A. E., ‘Controlled Permeability Formwork Influence on carbonation and chloride ingress in concrete’, in ‘Concrete under Severe Conditions, Environment and loading’, Proceedings of an International Conference, Sapporo, Japan 1995, 2, Edited by K. Sakai, N. Banthia and O. E. Gjørv (E & F N Spon, London, 1995) 1205–1215.

    Google Scholar 

  6. British Standards Institution, ‘BS 5328, Part 1: Concrete. Guide to specifying concrete’ and ‘BS 5328, Part 2: Concrete. Methods for specifying concrete mixes’ (London, 1997).

  7. British Standards Institution, ‘BS 8500: Concrete—complementary British Standard to BS EN 206-1’, ‘Part 1: Specification and guidance for the specifier’ and ‘Part 2: Complementary requirements for constituent materials, designed and prescribed concrete, production and conformity’, Drafts for public comment (London, 2000).

  8. British Standards Institution, ‘BS 12: Specification for Portland Cement’ (London, 1996).

  9. British Standards Institution, ‘BS 3892, Part 1: Pulverized-fuel ash. Specification for Pulverized-fuel ash for use with Portland cement’ (London, 1997).

  10. British Standards Institution, ‘BS 6699: Specification for ground granulated blastfurnace slag for use with Portland cement’ (London, 1992).

  11. British Standards Institution, ‘BS 882: Specification for aggregates from natural sources for concrete’ (London, 1992).

  12. British Standards Institution, ‘BS 4449: Specification for carbon steel bars for the reinforcement of concrete’ (London, 1997).

  13. British Standards Institution, ‘BS 6744: Specification for austenitic stainless steel bars for the reinforcement of concrete’ (London, 1988).

  14. Teychenne, D. C., Nicholls, J. C., Franklin, R. E. and Hobbs, D. W., ‘Design of normal concrete mixes’, 2nd Edn., Revised by B. K. March (Building Research Establishment, Watford, 1997).

    Google Scholar 

  15. Jones, M. R., Dhir, R. K. and Magee, B. J., ‘Concretes containing ternary blended binders: resistance to chloride ingress and carbonation’,Cem. Concr. Res. 26 (6) (1997) 825–831.

    Article  Google Scholar 

  16. Dhir, R. K., Jones, M. R. and McCarthy, M. J., ‘PFA Concrete: Chloride-induced reinforcement corrosion’,Mag. Concr. Res. 46 (169) (1994) 269–278.

    Google Scholar 

  17. Dhir, R. K., Jones, M. R., Ahmed, H. E. H. and Seneviratne, A. M. G., ‘Rapid estimation of chloride diffusion coefficient in concrete’,Mag. Concr. Res. 42 (152) (1990) 177–185.

    Article  Google Scholar 

  18. Dhir, R. K., Hubbard, F. H. and Unsworth, H. P., ‘XRF thin film copper disc evaporation test for elemental analysis of concrete test solutions’,Cem. Concr. Res. 25 (8) (1995) 1627–1632.

    Article  Google Scholar 

  19. British Standards Institution, ‘BS 1881, Part 124: Testing concrete. Methods for analysis of hardened of concrete’ (London, 1988).

  20. Stern, M. and Geary, A. L., ‘Electrochemical polarisation I: a theoretical analysis of the shape of polarisation curves’,Journal of the Electrochemical Society 104 (1) (1957) 56–63.

    Google Scholar 

  21. American Society for Testing and Materials, ‘ASTM C876: Standard method for half-cell potentials for uncoated reinforcement in concrete’ (Philadelphia, 1996).

  22. Gonzalez, J. A., Alonso, C. and Andrade, C., ‘Corrosion rate of reinforcements during accelerated carbonation of mortars made with different types of cement’, in ‘Corrosion of reinforcement in concrete construction’, SCI, Edited by A. P. Crane (Ellis Horwood Ltd, Chichester, 1983) 159–174.

    Google Scholar 

  23. Dhir, R. K., McCarthy, M. J. and McKenna, P. A., ‘Total design using controlled permeability formwork’, Report CTU/1399 (University of Dundee, 1999).

  24. Duggan, T., ‘Enhancing concrete durability using controlled permeability formwork’, in ‘Our World in Concrete and Structures’, Proceedings of 17th International Conference, Singapore, 1992 (Singapore, 1992) 57–62.

  25. Dhir, R. K., Hubbard, F. H., Munday, J. G. L., Jones, M. R. and Duerden, S. L., ‘Contribution of PFA to concrete workability and strength development’,Cem. Concr. Res. 18 (2) (1988) 277–289.

    Article  Google Scholar 

  26. Dhir, R. K. and Jones, M. R., ‘Influence of PFA on proportion of free chlorides in salt contaminated concrete’, in ‘Corrosion of reinforcement in concrete’, Proceedings of the 3rd SCI International Symposium, London, May 1990, Edited by C. L. Page, K. W. L. Treadaway and P. B. Bamforth (Elsevier Applied Science, Oxford, 1990) 227–236.

    Google Scholar 

  27. Jones, M. R., McCarthy, M. J. and Dhir, R. K., ‘Chloride resistant concrete’, in ‘Concrete 2000: Economic and durable construction through excellence’, Proceedings of International Conference, Dundee, Sept. 1993, 2, Ed R. K. Dhir and M. R. Jones, (E & F N Spon, London, 1993) 1429–1444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, M.J., Giannakou, A. & Jones, M.R. Specifying concrete for chloride environments using controlled permeability formwork. Mat. Struct. 34, 566–576 (2001). https://doi.org/10.1007/BF02482183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482183

Keywords

Navigation