Advertisement

Materials and Structures

, Volume 35, Issue 5, pp 301–309 | Cite as

Comparison of particle packing models for proportioning concrete constitutents for minimum voids ratio

  • M. R. Jones
  • L. Zheng
  • M. D. Newlands
Technical Reports

Abstract

This paper reports the findings of a study of four particle packing models used to proportion the mix constituents (solid particles) of concrete to produce a minimum voids ratio (or maximum packing density). The models have been compared using laboratory tests and published data. The basic mathematics of the models is discussed, particularly how each model defines the particle size distribution of the solid particles. The models have been applied to both the aggregate (sand and gravel) and the cement phase (PC, PFA, GGBS and limestone fines) and the estimated voids ratio compared with that measured in the laboratory. It was found that the models give broadly the same output and suggest similar combinations of materials to give the minimum voids ratio. Using the materials considered it was found that the largest improvement in voids ratio was achieved with the aggregate phase. The particle sizes of the cements considered here were similar and, as a result, only small improvements in voids ratio could be achieved. It was noted that proportioning concrete mix constituents to minimise voids ratio did tend to produce a harsher mix than normal. However, using the mix suitability factor, proposed by Day (1999), reduced this problem. There are some detail differences between the models suggesting further refinements could be carried out and a modification to one of the models is provided.

Keywords

Packing Density Void Ratio Coarse Aggregate Limestone Filler Minimum Void Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Cet article enregistre les résultats d'une étude de quatre modèles d'emballage de particules utilisés pour proportionner les constituants de mélange (particules pleines) du béton afin de produire un indice des vides minimum (ou la densité d'empilement maximum). Les modèles ont été comparés en utilisant des essais en laboratoire et des données éditées. Les mathématiques de base des modèles sont discutées, en particulier la façon dont chaque modèle définit la distribution de la dimension des particules pleines. Les modèles ont été appliqués au granulat (sable et gravier), à la phase de ciment (ciment, cendres volantes, laitier de haut fourneau et fines calcaires) et à l'indice estimé des vides par rapport à celui mesuré en laboratoire. On a constaté que les modèles donnent généralement les mêmes résultats et suggèrent des combinaisons semblables pour les matériaux pour donner l'indice des vides minimum. En utilisant les matériaux étudiés, on a constaté que la plus forte amélioration de l'indice des vides a été réalisée avec la phase globale. Les dimensions des particules des ciments considérés ici étaient semblables et, en conséquence, seules de petites améliorations de l'indice des vides pourraient être réalisées. On a noté que les proportions des constituants du mélange de béton visant à réduire au minimum l'indice des vides a eu tendance à produire un mélange plus dur que la normale. Cependant, en utilisant le facteur d'adéquation des mélanges, proposé par Day (1999), on réduit ce problème. Il y a quelques différences de détail entre les modèles suggérant que d'autres améliorations pourraient être effectuées et la modification de l'un des modèles est fournie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jones, M. R., McCarthy, M. J. and Dhir, R. K., ‘Chloride resistant concrete’, in Economic and Durable Construction through Excellence’, Proceedings of Concrete 2000 Conference, 2, Dundee, sept. 1993 (E & FN Spon, London, 1993) 1429–1444.Google Scholar
  2. [2]
    El-Mohr, M. A. K., ‘Development of chloride resistant concrete’, PhD Thesis, (University of Dundee, March 1997).Google Scholar
  3. [3]
    Ingram, K. D. and Daugherty, K. E., ‘A review of limestone additions to Portland cement and concrete’,Cement and Concrete Composites 13 (3) (1992) 165–170.CrossRefGoogle Scholar
  4. [4]
    Idorn, G. M., ‘Europack V1.1 User Manual’, (Idorn G M Consult A/S, 1995)Google Scholar
  5. [5]
    Questjay Limited, ‘MixSim98-Operating Manual’, Draft Version 5, (Questjay Limited, 1998).Google Scholar
  6. [6]
    De Larrard, F., ‘Private communication’, (2000)Google Scholar
  7. [7]
    Johansen, V. and Andersen, P. J., ‘Particle packing and concrete properties’,Materials Science of Concrete 2 (American Ceramic Society, Inc., Westerville, Ohio, 1996) 111–147Google Scholar
  8. [8]
    Furnas, C. C., ‘Flow of gasses through beds of broken solids’,Bureau of Mines Bulletin 307 (1929)Google Scholar
  9. [9]
    Aim, R. B. and Goff, P. L., ‘Effet de paroi dans les empilements désordonnés de sphères et application à la porosité de mélanges binaires’,Powder Technology 1 (1967) 281–90CrossRefGoogle Scholar
  10. [10]
    Toufar, W., Born, M. and Klose, E., ‘Contribution of optimisation of components of different density in polydispersed particles systems’, in ‘Freiberger Booklet A 558’, (VEB Deutscher Verlag für Grundstoffindustrie, 1976) 29–44 (in German).Google Scholar
  11. [11]
    Stovall, T. De Larrard, F. and Buil, M., ‘Linear packing density model for grain mixtures’,Powder Technology 48 (1986) 1–12.CrossRefGoogle Scholar
  12. [12]
    Dewar, J. D., ‘Ready-mixed concrete mix design’,Municipal Engineering 3 (1986).Google Scholar
  13. [13]
    De Larrard, F., ‘Ultrafine particle for making very high strength concretes’,Cement and Concrete Research 19 (1) (1989) 161–172.CrossRefGoogle Scholar
  14. [14]
    De Larrard, F., ‘Concrete Mixture Proportioning: A Scientific Approach’, (E & FN Spon, 1999).Google Scholar
  15. [15]
    Dewar, J. D., ‘Computer Modelling of Concrete Mixtures’, (E & FN Spon, 1999).Google Scholar
  16. [16]
    Goltermann, P., Johansen, V. and Palbol, L. ‘Packing of aggregate: an alternative tool to determine the optimal aggregate mix’,ACI Materials Journal 94 (5) (1997) 435–443.Google Scholar
  17. [17]
    Standish, N. and Borger, D. E., ‘The porosity of particulate mixtures’,Powder Technology 22 (1979) 121–125.CrossRefGoogle Scholar
  18. [18]
    Marsh, B. K., Teychenne, D. C., Franklin, R. E. and Erntroy, H. C., ‘Design of Normal Concrete Mixes’, 2nd Edn. (Building Research Establishment, 1997).Google Scholar
  19. [19]
    Day, K. W., ‘Concrete Mix Design, Quality Control and Specification’, 2nd Edn. (E & FN Spon, 1999).Google Scholar

Copyright information

© RILEM 2002

Authors and Affiliations

  • M. R. Jones
    • 1
  • L. Zheng
    • 1
  • M. D. Newlands
    • 1
  1. 1.Concrete Technology Unit, Department of Civil EngineeringUniversity of DundeeScotland, UK

Personalised recommendations