Materials and Structures

, Volume 34, Issue 10, pp 636–644 | Cite as

Experimental evaluation of the ductility of a reduced-scale reinforced masonry building

  • D. Zonta
  • G. Zanardo
  • C. Modena
Scientific Reports


The technical aspects and the notable outcomes of an experiment on a reduced scale building, aimed to determine the seismic performances of an advanced reinforced masonry construction technique, are presented. The testing program includes 33 shaking table tests (characterised by a design PGA varying from 0.02 g up to 0.6 g), alternated with sequences of low intensity dynamic characterisations, based on shock tests. The damage evolution is analysed by modelling the structure as a non-linear SDOF oscillator, where the input is the ground motion and the output is the top floor response. The analysis results high-light a very satisfactory seismic behaviour of the tested construction technique, in terms of the response to low-medium intensity earthquakes, and the performance at the ultimate limit state (ductility and reduction factor equal to 7.5 and 3.6, respectively). These outcomes are discussed with reference to the current Eurocode provisions.


Ground Motion Pier Peak Ground Acceleration Masonry Building Shake Table Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Des essais sur table vibrante ont été effectués afin d'observer la réponse sismique d'un bâtiment en briques, à échelle réduite, renforcé selon une nouvelle méthode. Le programme d'essais inclut 33 séismes, caractérisés par une valeur maximale d'accélération au sol variant entre 0,02 g et 0,6 g, alternés avec des séquences de caractérisations dynamiques à basse intensité. L'évolution des dommages a été analysée en modélisant la structure comme un oscillateur non linéaire à un degré de liberté, sollicité à la base par le mouvement au sol. La réponse de l'oscillateur correspond à celle du bâtiment mesurée au sommet. Les résultats analytiques mettent en évidence le comportement sismique satisfaisant des bâtiments renforcés selon la technique r.m., tant pour des séismes à basse-moyenne intensité que pour des séismes où les états limites sont atteints (ductilité de 7,5 et facteur de comportement équivalant à 3,6). Les résultats sont comparés aux recommandations de L'Eurocode.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Shing, P. B., Shuller, M. and Hoskere, V. S., ‘In plane resistance of reinforced masonry shear walls’,J. Struct. Engng., ASCE 116 (3) (1990) 619–640.Google Scholar
  2. [2]
    Tomazevic, M. and Modena, C., ‘Seismic behaviour of masonry buildings with a mixed structural system: earthquake simulator study of three storey building models’,European Earthquake Engng.,3 (1) (1989) 19–28.Google Scholar
  3. [3]
    Tomazevic, M. and Weiss, P., ‘On the analysis of seismic resistance of masonry buildings’,European Earthquake Engng. 1 (1992) 23–35.Google Scholar
  4. [4]
    Gülkan, P., Clough, R.W., Mayes, R. and Manos, G. C., ‘Seismic testing of single-story masonry houses’ Parts 1–2,J. Struct. Engng., ASCE 116 (1) (1990).Google Scholar
  5. [5]
    Benedetti, D., Carydis, P. G. and Pezzoli, P., ‘Shaking table tests on 24 simple masonry buildings’,Earthquake Engng. Struct. Dyn. 27 (1998), 67–90.CrossRefGoogle Scholar
  6. [6]
    Bernardini, A., Modena, C. and Valluzzi, M. R., ‘Load transfer mechanisms in masonry: Friction along a crack within a brick’,Mater. Struct. 31 (1998) 42–48.Google Scholar
  7. [7]
    Bernardini, A., Modena, C., Lazzaro G. and Valluzzi, M. R., ‘Cyclic behaviour and modelling of reinforced masonry panels’, Proc. 11th International Brick/Block Masonry Conference, (Shanghai, China, October 1997).Google Scholar
  8. [8]
    Modena, C., Sonda, D. and Zonta, D., ‘Dynamic testing on full and reduced scale buildings’, Proc. 8th National Conv. ANIDIS, Taormina, September 1997, 2, 1041–1048 (in Italian).Google Scholar
  9. [9]
    Modena, C., Zanardo, G. and Zonta, D., ‘Shaking table tests on a r. m. reduced scale model’, Proc. XII European Conf. Earthquake Engng., Paris, September 1999. (Balkema, Rotterdam, 1999).Google Scholar
  10. [10]
    Ewins, D. J., ‘Modal Testing: Theory and Practice’, John Wiley & Sons Inc., London, 1984).Google Scholar
  11. [11]
    Iwan, W. D. and Yang, I. M., ‘Application of statistical linearization techniques to nonlinear multidegree-of-freedom systems’J. Applied Mechanics, ASME 39 (2) (1972), 545–550.zbMATHGoogle Scholar
  12. [12]
    Tomazevic, M., Lutman, M. and Velechovsky, A., ‘Aseismic streghtening of old ston masornsy buildings: is the replacement of wooden floors with RC slabs always necessary?’,European Earthquake Engng. 2 (1993).Google Scholar
  13. [13]
    Gülkan, P. and Sozen, M. A., ‘Inelastic response to of reinforced concrete structures to earthquake motions’,ACI Struct. J. 71 (12) (1974), 604–610.Google Scholar
  14. [14]
    Shibata, A. and Sozen, M., ‘Substitute structure method for seismic design in reinforced concrete’,J. Struct. Div., ASCE 102 (1), (1976), 1–18.Google Scholar
  15. [15]
    Priestley, M. J. N., ‘Performance based seismic design’, Proc., XII World Conf. on Earthquake Engineering, Auckland, NZ, January 2000, (New Zealand Society for Earthquake Engineering, Upper Hutt, 1999), 2831/12831/22.Google Scholar
  16. [16]
    ENV 1998-1-1 ‘Eurocode 8: Design provisions for earthquake resistance of structures’, (1994).Google Scholar

Copyright information

© RILEM 2001

Authors and Affiliations

  • D. Zonta
    • 1
  • G. Zanardo
    • 1
  • C. Modena
    • 1
  1. 1.Dipartimento di Costruzioni e TrasportiUniversità di PadovaPadovaItaly

Personalised recommendations