Skip to main content
Log in

Full-scale tests on rectangular hollow bridge piers

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The seismic performance of rectangular hollow bridge piers is a significant issue of the high-speed rail project in Taiwan because the flexural ductility and shear capacity of such columns with the configuration of lateral reinforcement used in Taiwan is not clear. In this paper, three prototypes of such piers were tested under a constant axial load and a cyclically reversed horizontal load to investigate their seismic behavior, including flexural ductility, dissipated energy, and shear capacity. An analytical model is developed to predict the momentcurvature curve of sections and the load-displacement relationship of piers. Based on the test results, the seismic behavior of such piers is presented. The test results are also compared to the proposed analytical model. It is found that the ductility factors of the tested piers are in the range from 4.1 to 10.3, and the proposed analytical model can predict the load-displacement relationship of such piers with acceptable accuracy.

Résumé

Les performances sismiques des piles de ponts creux rectangulaires constituent l'une des questions essentielles du projet de rails adaptés pour une grande vitesse, à Taiwan, car la ductilité de flexion et la capacité de cisaillement de tels piliers avec la configuration de renforcement latéral à Taiwan ne sont pas clairement définies. Dans cet article, trois prototypes de piles de ponts creux rectangulaires ont été testés sous charge axiale constante et sous charge horizontale inversée de manière cyclique, afin d'examiner leur comportement sismique, notamment la ductilité de flexion, la dissipation d'énergie et la capacité de cisaillement. Un modèle analytique est développé dans le but de prévoir la courbe moment-courbure de sections et la relation charge-déplacement des piliers. Fondé sur les résultats d'essais, le comportement sismique de tels piles est présenté. Les résultats de ces essais sont également comparés au modèle analytique proposé. Il apparaît que les facteurs de ductilité des piliers sont de l'ordre de 4,1 à 10,3, et que le modèle analytique proposé peut prévoir la relation charge-déplacement de tels piliers avec une précision acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mander, J. B., Priestley, M. J. N. and Park, R., ‘Behavior of ductile hollow reinforced concrete columns’,Bulletin of the New Zealand National Society for Earthquake Engineering 16 (4) (1983) 273–290.

    Google Scholar 

  2. Taylor, A. W. and Breen, J. E., ‘Design recommendations for thin-walled box piers and pylons’,ACI Concrete International 16 (12) (1994) 36–41.

    Google Scholar 

  3. Suda, K., Murayama, Y., Amano, R. and Ichinomiya, T., ‘Effect of torsion on ductility of reinforced concrete piers with hollow section’, Proceedings of the 50th Annual Conference of JSCE, Vol. V, 1995, 840–841.

    Google Scholar 

  4. Suda, K., Shimbo, H., Masukawa, J. and Murayama, Y., ‘New method for restraint of longitudinal bar buckling in rectangular columns with hollow section’, Proceedings of Technical Conference of the Great Hanshin-Awaji Earthquake, JSCE, Tokyo, 1996, 579–582.

  5. Matsuda, T., Yukawa, Y., Yasumatsu, T., Ishihara, S., Suda, K., Shimbo, H. and Saito, H., ‘Seismic model tests of reinforced concrete hollow piers’, Proceedings of 12th US-Japan Bridge Engineering Workshop, Buffalo, 1996, 407–421.

  6. Suda, K., Shimbo, H., Masukawa, J. and Murayama, Y., ‘Reinforcing method to improve ductility of RC column with hollow section’,Proc. of JCI 18 (2) (1996) 725–730.

    Google Scholar 

  7. Suda, K., Amano, R., Masukawa, J. and Ichinomiya, T., ‘Effects of torsion on ductility of high-piers’,Proc. of JCI 19 (2) (1997) 789–794.

    Google Scholar 

  8. Kent, D. C. and Park, R., ‘Flexural members with confined concrete’,ASCE J. Struct. Div. 97 (7) (1971) 1969–1990.

    Google Scholar 

  9. Park, R., Prietsley, M. J. N. and Gill, W. D., ‘Ductility of square-confined concrete columns’,ASCE J. Struct. Div. 108 (4) (1982) 929–950.

    Google Scholar 

  10. Muguruma, H., Watanabe, S., Tanaka, S., Sakurai, K. and Nakaruma, E., ‘A study on the improvement of bending ultimate strain of concrete’,J. Struct. Engrg., Tokyo, Japan,24 (1978) 109–116.

    Google Scholar 

  11. Muguruma, H., Watanabe, S., Katsuta, S., and Tanaka, S., ‘A stress-strain model of confined concrete’,Proc. JCA Cement and Concrete, Tokyo, Japan,34 (1980) 429–432.

    Google Scholar 

  12. Sheikh, S. A. and Uzumeri, S. M., ‘Strength and ductility of tied concrete columns’,ASCE J. Struct. Div. 106 (5) (1980) 1079–1102.

    Google Scholar 

  13. Sheikh, S. A. and Uzumeri, S. M., ‘Analytical model for concrete confinement in tied columns’,ASCE J. Struct. Div. 108 (12) (1982) 2703–2722.

    Google Scholar 

  14. Mander, J. B., Priestley, M. J. N. and Park, R., ‘Theoretical stress-strain model for confined concrete’,ASCE J. Struct. Engrg. 114 (8) (1988) 1804–1826.

    Google Scholar 

  15. Mander, J. B., Priestley, M. J. N. and Park, R., ‘Observed stress-strain behavior of confined concrete’,ASCE J. Struct. Engrg. 114 (8) (1988) 1827–1849.

    Article  Google Scholar 

  16. Fujii, M., Kobayashi, K., Miyagawa, T., Inoue, S. and Matsumoto, T., ‘A study on the application of a stress-strain relation of confined concrete’,Proc. JCA Cement and Concrete, Tokyo, Japan,42 (1988) 311–314.

    Google Scholar 

  17. Saatcioglu, M. and Razvi, S. R., ‘Strength and ductility of confined concrete’,ASCE J. Struct. Engrg. 118 (6) (1992) 1590–1607.

    Google Scholar 

  18. Hoshikuma, J., Kawashima, K., Nagaya, K., and Taylor, A. W., ‘Stress-strain model for confined reinforced concrete in bridge piers’,ASCE J. Struct. Engrg.,123 (5) (1997) 624–633.

    Article  Google Scholar 

  19. Mander, J. B., ‘Seismic design of bridge piers’, PhD Thesis, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand (1983).

    Google Scholar 

  20. Mander, J. B., Panthaki, F. D. and Kasalanti, A., ‘Low cycle fatigue behavior of reinforcing steel’,ASCE J. Materials in Civil Engrg. 6 (4) (1994) 453–468.

    Article  Google Scholar 

  21. Monti, G. and Nuti, C., ‘Nonlinear cyclic behavior of reinforcing bars including buckling’,ASCE J. Struct. Engrg. 118 (12) (1992) 3268–3284.

    Google Scholar 

  22. Mo, Y. L., ‘Dynamic Behavior of Concrete Structures’, (Elsevier Science Publishers B. V., 1994).

  23. Mo, Y. L., ‘Dynamic Behavior of Concrete Structures’, (Elsevier Science Publishers B. V., 1994).

  24. ACI Committee 318:1995, Building code requirement for reinforced concrete, ACI, Detroit.

  25. Priestley, M. J. N., Seible, F. and Calvi, G. M., ‘Seismic Design and Retrofit of Bridges’, (John Wiley & Sons, 1996).

  26. Zahn, F. A., Park, R. and Priestley, M. J. N., ‘Flexural strength and ductility of circular hollow reinforced concrete columns without confinement on inside face’,ACI Structural Journal,87 (2) (1990) 156–166.

    Google Scholar 

  27. Priestley, M. J. N., Verma, R. and Xiao, Y., ‘Seismic shear strength of reinforced concrete columns’,ASCE J. Struct. Engrg. 120 (8) (1994) 2310–2329.

    Article  Google Scholar 

  28. Aschheim, M., Moehle, J. P., and Werner, S. D., ‘Deformability of Concrete Columns’, Project Report under Contract No. 59Q122, California Department of Transportation, Division of Structures, Sacramento, Calif. (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, Y.K., Mo, Y.L. & Yang, C.Y. Full-scale tests on rectangular hollow bridge piers. Mat. Struct. 35, 117–125 (2002). https://doi.org/10.1007/BF02482111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02482111

Keywords

Navigation