Advertisement

Materials and Structures

, 35:110 | Cite as

Active and non-active porosity in concrete Part II: Evaluation of existing models

  • I. O. Yaman
  • H. M. Aktan
  • N. Hearn
Scientific Reports

Abstract

Mechanical, semi-empirical, and theoretical models suitable for describing concrete mechanical properties (modulus of elasticity, bulk modulus, and ultrasonic pulse velocity) are evaluated. Extensive experimental data is generated from saturated and dry concrete specimens with varying volume of active and non-active pores. Experimetnal data established that active and non-active pores appear at different aspect ratios furthermore, active pores change shape with moisture content. The experimental data is compared to those obtained from these three model categories. Models are evaluated based on their capability in evaluating the effect of pores during dry and saturated states. One model, capable of representing pores at various aspect ratios, was successful in describing mechanical properties in dry and saturated states.

Keywords

Bulk Modulus Concrete Research Pore Shape Ultrasonic Pulse Velocity Active Pore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les résultats d'une étude visant à évaluer la fiabilité de différents modèles permettant de prédire les propriétés mécaniques (module élastique, vitesse de propagation d'une onde ultrasonique) sont présentés. Trois différents types de modèles ont été considérés: des modèles mécaniques, semi-empiriques et théoriques. De nombreuses données expérimentales ont été générées dans le cadre de cette étude. Le programme expérimental visait à étudier le comportement d'éprouvettes de béton sec et humide préparé à différentes teneurs en pores actifs (pores capillaires) et non-actifs (vides d'air). Les résultats des essais indiquent que les pores actifs et non-actifs ont différents coefficients de forme et que la géométrie des pores actifs varie en fonction de la teneur en eau du béton. Les prédictions obtenues avec les différents modèles sont comparées aux valuers expérimentales. La capacité des modèles à prendre en considération l'influence des pores et de l'état hygrométrique du matériau a été évaluée. Les résultats de cette évaluation systématique démontrent que seul le modèle qui considère le coefficient de forme des pores permet de prédire correctement les propriétés mécaniques du béton à l'état sec et humide.

References

  1. [1]
    Benveniste, Y., ‘A new approach to the application of Mori-Tanaka's theory in composite materials’,Mechanics of Materials 6 (1987) 147–157.CrossRefGoogle Scholar
  2. [2]
    Berryman, J. G., ‘Long-wavelength propagation in composite elastic media, I. Spherical inclusions’,J. Acous. Soc. Am. 68 (6), (1980) 1809–1819.MATHCrossRefGoogle Scholar
  3. [3]
    Christensen, R. M., ‘Mechanics of composite materials’, (John Wiley and Sons, New York, 1979).MATHGoogle Scholar
  4. [4]
    Christensen, R. M., ‘A critical evaluation for a class of micromechanics models’,J. Mech. Phys. Solids 38 (3) (1990) 379–404.CrossRefGoogle Scholar
  5. [5]
    Counto, U. J., ‘The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete’,Magazine of Concrete Research 16 (48) (1964) 129–138.Google Scholar
  6. [6]
    Hansen, T. C., ‘Influence of aggregate and voids on modulus of elasticity if concrete, cement mortar, and cement paste’,Journal of the American Concrete Institute 62 (2) (1965) 193–215.Google Scholar
  7. [7]
    Hashin, Z., ‘The elastic moduli of heterogeneous materials’,Journal of Applied Mechanics 29 (1962) 143–162.MATHMathSciNetGoogle Scholar
  8. [8]
    Hashin, Z. and Shtrikman, S., ‘A variational approach to the theory of the elastic behaviour of multiphase materials’,J. Mech. Phys. Solids 11 (1963) 127–140.MATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    Hearn, N., ‘Effect of shrinkage and load-induced cracking on water permeability of concrete’,ACI Materials Journal 96 (2) (1999) 1–8.Google Scholar
  10. [10]
    Hirsch, T. J., ‘Modulus of elasticity of concrete affected by Eelastic moduli of cement paste matrix and aggregate’,Proceedings of the American Concrete Institute 59 (1962) 427–451.Google Scholar
  11. [11]
    Kuster, G. T. and Toksoz, M. N., ‘Velocity and attenuation of seismic waves in two phase media: Part I. Theoretical formulations’,Geophysics 39 (5) (1974a) 587–606.CrossRefGoogle Scholar
  12. [12]
    Kuster, G. T. and Toksoz, M. N., ‘Velocity and attenuation of seismic waves in two phase media: Part II. Experimental results’,Geophysics 39 (5) (1974b) 607–618.CrossRefGoogle Scholar
  13. [13]
    Mackenzie, I. K., ‘The elastic constants of a solid containing spherical holes’,Proc. of the Physical Society Soc. (B)63 (1950) 63–73.MATHGoogle Scholar
  14. [14]
    Martin, L. P., Dadon, D. and Rosen, M., ‘Evaluation, of ultrasonically determined elasticity-porosity relations in zinc oxide’Journal of the American Ceramic Society 79 (5) (1996) 1281–1289.CrossRefGoogle Scholar
  15. [15]
    Mehta, P. K. and Monteiro, P. J. M., ‘Concrete: structure, properties, and materils’, Second Edition, (Prentice-Hall Inc., New Jersey, 1993).Google Scholar
  16. [16]
    Neville, A. M., ‘Properties of Concrete’, (Longman Group Limited, 1995).Google Scholar
  17. [17]
    Nilsen, A. U. and Monteiro, P. J. M., ‘Concrete: a three phase materials’,Cement and Concrete Research 23 (1993) 147–151.CrossRefGoogle Scholar
  18. [18]
    Nilsen, A. U., Monteiro, P. J. M. and Gjørv, O. E., ‘Estimation of the elastic moduli of lightweight aggregate’,Cement and Concrete Research 25 (2) (1995) 276–280.CrossRefGoogle Scholar
  19. [19]
    Panakkal, J. P., ‘Longitudinal ultrasonic pulse velocity as a predictor of Young's modulus in porous materials’,Materials Evaluation (1997) 1367–1371.Google Scholar
  20. [20]
    Popovics, S., ‘Strength and related properties of concrete: Aa quantitative approach’, (John Wiley and Sons, New York, 1998).Google Scholar
  21. [21]
    Rossi, P., ‘Influence of cracking in the presence of free water on the mechanical behaviour of concrete’,Magazine of Concrete Research 43 (154) (1991) 53–57.CrossRefGoogle Scholar
  22. [22]
    Sansalone, M. and Carino, N. J., ‘Transient impact response of plates containing flaws’,Journal of the National Bureau of Standards 92 (6) (1987) 369–381.Google Scholar
  23. [23]
    Simeonov, P. and Ahmad, S., ‘Effect of transition zone on the elastic behavior of cement-based composites’,Cement and Concrete Research 25 (1) (1995) 165–176.CrossRefGoogle Scholar
  24. [24]
    Wittmann, F. H., ‘Deformation of concrete at variable moisture content’, in ‘Mechanics of Materials’, Ed. Z.Bažant, (John Wiley and Sons Ltd., 1985).Google Scholar
  25. [25]
    Yaman, I. O., Udegbunam, O. and Aktan, H., ‘Ultrasonic pulse propagation simulation in concrete specimens’, (Proceedings of 12th Engineering Mechanics Conference in CD, San Diego, 1998).Google Scholar
  26. [26]
    Yaman, I. O., Udegbunam, O. and Aktan, H. M., ‘Assessing concrete permeability from ultrasonic pulse velocity measurements’, (Proceedings of the 79th Annual Meeting of Transportation Research Board in CD, Paper No: 001190, 2000).Google Scholar
  27. [27]
    Yaman, I. O., Hearn, N. and Aktan, H., ‘Active and non-active pore structure of concrete—Part I: Experimental evidence’,Mater. Struct.,35 (246) (2001) 102–109.Google Scholar
  28. [28]
    Zhou, F. P., Lydon, F. D. and Barr, B. I. G., ‘The elastic coarse aggregate on elastic modulus and compressive strength of high performance concrete’,Cement and Concrete Research 25 (1) (1995) 177–186.CrossRefGoogle Scholar
  29. [29]
    Zimmerman, R. W., King, M. S. and Monteiro, P. J. M., ‘The elastic moduli of mortar as a porous-granular material’,Cement and Concrete Research 16 (1986) 239–245.CrossRefGoogle Scholar
  30. [30]
    Zimmerman, R. W., ‘Elastic moduli of a solid containing spherical inclusions’,Mechanics of Materials 12 (1991) 17–24.CrossRefGoogle Scholar

Copyright information

© RILEM 2002

Authors and Affiliations

  • I. O. Yaman
    • 1
  • H. M. Aktan
    • 1
  • N. Hearn
    • 2
  1. 1.Department of Civil and Environmental EngineeringWayne State UniversityDetroitUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of WindsorCanada

Personalised recommendations