Asymptotic linear prediction of extreme order statistics

  • H. N. Nagaraja
Article

Summary

We consider the problem of predicting thesth order statistic using the lowestr order statistics from a large sample of sizen under the assumption that the sample minimum, appropriately normalized, has a non-degenerate limit distribution asn→∞. Assumingr, s fixed andn→∞ we obtain asymptotically best linear unbiased as well as asymptotically best linear invariant predictors of thesth order statistic.

Key words

Extreme-value distributions best linear unbiased predictor best linear invariant predictors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ahsanullah, M. (1980). Linear prediction of record values for the two parameter exponential distribution,Ann. Inst. Statist. Math.,32, 363–368.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    David, H. A. (1981).Order Statistics, Second Edition, Wiley, New York.MATHGoogle Scholar
  3. [3]
    Galambos, J. (1978).The Asymptotic Theory of Extreme Order Statistics, Wiley, New York.MATHGoogle Scholar
  4. [4]
    Gnedenko, B. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire,Ann. Math.,44, 423–453.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Greenberg, B. G. and Sarhan, A. E. (1959). Matrix inversion, its interest and application in analysis of data,J. Amer. Statist. Ass.,54, 755–766.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Hall, P. (1978). Representation and limit theorems for extreme value distributions,J. Appl. Prob.,15, 639–644.MATHCrossRefGoogle Scholar
  7. [7]
    Kaminsky, K. S., Mann, N. R. and Nelson, P. I. (1975). Best and simplified linear invariant prediction of order statistics in location and scale families,Biometrika,62, 525–527.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Kaminsky, K. S. and Nelson, P. I. (1975a). Best linear unbiased prediction of order statistics in location and scale families,J. Amer. Statist. Ass.,70, 145–150.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Kaminsky, K. S. and Nelson, P. I. (1975b). Characterization of distributions by the form of predictors of order statistics,Statistical Distributions in Scientific Work, (eds. Patil, G. P. et al.), Reidel Publishing Co. Dordercht-Holland,3, 113–115.Google Scholar
  10. [10]
    Lloyd, E. H. (1962). Generalized least-squares theorem,Contributions to Order Statistics (eds. Sarhan, A. E. and Greenberg, B. G.), Wiley, New York, 20–27.Google Scholar
  11. [11]
    Nagaraja, H. N. (1982). Record values and extreme value distributions,J. Appl. Prob.,19, 233–239.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Nelson, W. (1982).Applied Life Data Analysis, Wiley, New York.MATHCrossRefGoogle Scholar
  13. [13]
    Watson, G. S. (1972). Prediction and the efficiency of least squares,Biometrika,59, 91–98.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Weissman, I. (1978). Estimation of parameters and large quantiles based on thek largest observations,J. Amer. Statist. Ass.,73, 812–815.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Weissman, I. (1981). Confidence intervals for the threshold parameters,Comm. Statist. Theor. Method., A,10, 549–557.MathSciNetGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1984

Authors and Affiliations

  • H. N. Nagaraja
    • 1
  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations