Asymptotic properties of the maximum likelihood estimate in the first order autoregressive process

  • Yasunori Fujikoshi
  • Yoshimichi Ochi
Article

Summary

In this paper we obtain an asymptotic expansion of the distribution of the maximum likelihood estimate (MLE)\(\hat \alpha _{ML} \) based onT observations from the first order Gaussian process up to the term of orderT −1. The expansion is used to compare\(\hat \alpha _{ML} \) with a generalized estimate\(\hat \alpha _{c_1 ,c_2 } \) including the least square estimate (LSE)\(\hat \alpha _{LS} \), based on the asymptotic probabilities around the true value of the estimates up to the terms of orderT −1. It is shown that\(\hat \alpha _{ML} \) (or the modified MLE\(\hat \alpha _{ML}^* \)) is better than\(\hat \alpha _{c_1 ,c_2 } \) (or the modified estimate\(\hat \alpha _{c_1 ,c_2 }^* \)). Further, we note that\(\hat \alpha _{ML}^* \) does not attain the bound for third order asymptotic median unbiased estimates.

AMS 1980 subject classifications

Primary 62M10 Secondary 62E20 

Key words and phrases

First order autoregressive process maximum likelihood estimate asymptotic expansion probability of concentration third order efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akahira, M. (1975). A note on the second order asymptotic efficiency of estimators in an autoregressive process,Rep. Univ. Electro-comm. Sci. & Tech. Sect.,26, 143–149.MathSciNetGoogle Scholar
  2. [2]
    Akahira, M. (1979). On the second order asymptotic optimality of estimators in an autoregressive process,Rep. Univ. Electro-comm. Sci. & Tech. Sect.,29, 213–218.MathSciNetGoogle Scholar
  3. [3]
    Akahira, M. and Takeuchi, K. (1980). Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency,Lecture Note in Statistics, Vol. 7, Springer, Deu.Google Scholar
  4. [4]
    Anderson, T. W. (1971).The Statistical Analysis of Time Series, Wiley, New York.MATHGoogle Scholar
  5. [5]
    Anderson, T. W. (1974) An asymptotic expansion of the distribution of the limited information maximum likelihood estimate of a coefficient in a simultaneous equation system,J. Amer. Statist. Ass.,69, 565–573.MATHCrossRefGoogle Scholar
  6. [6]
    Durbin, J. (1980). Approximations for densities of sufficient estimators,Biometrika,67, 311–333.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Ochi, Y. (1981). Asymptotic expansions for the distribution of an estimator in the first order autoregressive process,Hiroshima Univ. Stat. Res. Group Tech. Rep., No. 42.Google Scholar
  8. [8]
    Pfanzagl, J. (1973). Asymptotic expansions in parametric statistical theory, inDevelopments in Statistics, Vol 3, (ed. P. R. Krishnaiah), Academic Press, New York, 1–97.Google Scholar
  9. [9]
    Phillips, P. C. B. (1977). Approximations to some finite sample distributions associated with a first order stochastic difference equation,Econometrica,45, 463–486.MATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Phillips, P. C. B. (1978). Edgeworth and saddlepoint approximations in the first-order noncircular autoregression,Biometrika,65, 91–98.MATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1984

Authors and Affiliations

  • Yasunori Fujikoshi
    • 1
  • Yoshimichi Ochi
    • 1
  1. 1.Radiation Effect Research FoundationHiroshima UniversityHiroshinaJapan

Personalised recommendations