Applied Mathematics and Mechanics

, Volume 13, Issue 9, pp 841–850 | Cite as

The Hölder continuity for the gradient of solutions to one-sided obstacle problems

  • Wang Xiang-dong
  • Liang Xi-ting


The Hölder continuity is proved for the gradient of the solution to the one-sided obstacle problem of the following variational inequality in the case 1<p<2

Key words

variational inequality obstacle problem gradient Hölder continuity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lindqvist, P., Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity,Nonlinear Anal. T. M. A.,12 (1988), 1245–1255.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Liang Xi-ting and Yu Ming-qi, The Hölder continuity for the gradient of the solution to an obstacle problem,J. Math., 4 (1991), 349–357.Google Scholar
  3. [3]
    Norando, t.,C 1,a local regularity for a class of quasilinear elliptic variational inequalities,Bull. U. M. I.,Ser. VI, V-C (1986), 281–292.MathSciNetGoogle Scholar
  4. [4]
    Michael, J. H. and W. P. Zimer, Interior regularity for solution to obstacle problems,Nonlinear Anal. T. M. A.,10 (1986), 1427–1448.CrossRefMATHGoogle Scholar
  5. [5]
    Di Benedetto, E.,C 1+a local regularity of weak solutions of degenerate elliptic equations,Nonlinear Anal. T. M. A.,7 (1983), 827–850.CrossRefGoogle Scholar
  6. [6]
    Giaquinta, G.,Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton (1983).MATHGoogle Scholar
  7. [7]
    Meyers, N. G., Mean oscillation over cubes and Hölder continuity,Proc. Amer. Math. Soc.,15 (1964), 717–721.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Giaquinta, G., Remarks on the regularity of weak solutions to some variational inequalities,Math. Z.,177 (1981), 15–31.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Shanghai University of Technology (SUT) 1992

Authors and Affiliations

  • Wang Xiang-dong
    • 1
  • Liang Xi-ting
    • 2
  1. 1.Xuchang Teachers CollegeXuchang
  2. 2.Zhongshan UniversityGuangzhou

Personalised recommendations