Applied Mathematics and Mechanics

, Volume 13, Issue 9, pp 815–824 | Cite as

Perturbation formulation of continuation method including limit and bifurcation points

  • Wu Yi
  • Ren Wen-min
  • Zhang Wei


This paper gives the perturbation formulation of continuation method for nonlinear equations. Emphasis is laid on the discussion of searching for the singular points on the equilibrium path and of tracing the paths over the limit or bifurcation points. The method is applied to buckling analysis of thin shells. The pre-and post-buckling equilibrium paths and deflections can be obtained, which are illustrated in examples of buckling analysis of cylindrical and toroidal shells.

Key words

continuation method perturbation limit point bifurcation point thin shell buckling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Keller, H.,Lecture on Nonlinear Method in Bifurcation Problems (1987).Google Scholar
  2. [2]
    Gourlay, A. and G. Watson,Computational Methods for Matrix Eigenproblems (1973)Google Scholar
  3. [3]
    Wu, Y., Geometrically nonlinear and postbuckling analysis of thin axisymmetric shells, Dissertation for Ph. D. of Tsinghua Univ. (1989).Google Scholar
  4. [4]
    Li Qin-yang and Bai Feng-shang, Numerical method of simple bifurcation with single parameter, Science Report of Tsinghua Univ. 87-011 (1987).Google Scholar
  5. [5]
    Sanders, J.,Quart. Appl. Math.,21 (1963), 21.MathSciNetGoogle Scholar
  6. [6]
    Yamaki, N.,Elastic Stability of Circular Cylindrical Shells (1984).Google Scholar
  7. [7]
    Pakagiotopoulos, G.,Int. J. Pres. Ves. and Piping,20 (1985), 87.CrossRefGoogle Scholar
  8. [8]
    Sobel, L. and W. Flugge,J. AIAA,5 (1967), 425.Google Scholar
  9. [9]
    Bushnell, D.,J. AIAA,5 (1967), 1455.MATHGoogle Scholar
  10. [10]
    Jordan, P.,J. AIAA,11 (1973), 1439.CrossRefGoogle Scholar

Copyright information

© Shanghai University of Technology (SUT) 1992

Authors and Affiliations

  • Wu Yi
    • 1
  • Ren Wen-min
    • 2
  • Zhang Wei
    • 2
  1. 1.Peking Institute of Nuclear EngineeringBeijing
  2. 2.Qinghua UniversityReijing

Personalised recommendations