Advertisement

Applied Composite Materials

, Volume 4, Issue 3, pp 173–185 | Cite as

Mechanical and impact behaviour of (Al2O3) p /2014 and (Al2O3) p /6061 Al metal matrix composites in the 25–200°C range

  • F. Bonollo
  • L. Ceschini
  • G. L. Garagnani
Article

Abstract

The present work is aimed at studying the impact behaviour of commercially available Aluminium matrix composites, in a temperature interval ranging from 25°C to 200°C. The results of instrumented impact tests and of microstructural and fractographic observations are correlated with the tensile properties of these materials. A description of the phenomena involved (particles cracking, interfacial failure associated to matrix-reinforcement reaction layers, ductile behaviour of the matrix) is given. The effect of testing temperature as well as that of the matrix characteristics are presented and discussed.

Key words

aluminum matrix composites impact strength tensile strength high temperature testing fractography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clyne, T. W. and Withers, P. J.,An Introduction to Metal Matrix Composites, Cambridge University Press, Cambridge, 1993.Google Scholar
  2. 2.
    Lloyd, D. J., ‘Particle Reinforced Aluminium and Magnesium Matrix Composites’,Interonational Materials Review 39(1), 1994, 1–23.Google Scholar
  3. 3.
    Nutt, S. R. and Duva, J. M., ‘A Failure Mechanism in Al-SiC Composites’,Scripta Metallurgica 20, 1986, 1055–1058.CrossRefGoogle Scholar
  4. 4.
    You, C. P., Thompson, A. W. and Bernstein, I. M., ‘Proposed Failure Mechanism in a Discontinuously Reinforced Aluminum Alloy,’Scripta Metallurgica,21, 1987, 181–185.CrossRefGoogle Scholar
  5. 5.
    Flom, Y. and Arsenault, R. J., ‘Fracture of SiC/Al Composites’, inProceedings 6th Int. Conf. on Composite Materials, Elsevier, Amsterdam, 1987, pp. 2.189–2.198.Google Scholar
  6. 6.
    Lloyd, D. J., ‘Aspects of Fracture in Particulate Reinforced Metal Matrix Composites’,Acta Metallurgica et Materialia 39(1), 1991, 59–71.CrossRefGoogle Scholar
  7. 7.
    Lewandowski, J. J., Liu, C. and Hunt, W. H., ‘Effects of Matrix Microstructure and Particle Distribution on Fracture of an Aluminum Metal Matrix Composite’,Materials Science and Engineering A107, 1989, 241–255.CrossRefGoogle Scholar
  8. 8.
    Hunt, W. H., Osman, T. M. and Lewandowski, J. J., “Micro- and Macrostructural Factors in DRA Fracture Resistance’,Journal of Metals 45(1), 1993, 30–35.Google Scholar
  9. 9.
    Mortensen, A., ‘A Review of the Fracture Toughness of Particle reinforced Aluminum Alloys’, inProceedings Int. Conf. on ‘Fabrication of particulates reinforced metal composites’, Montreal, 1990, pp. 217–233.Google Scholar
  10. 10.
    Friend, C. M., ‘Toughness in Metal Matrix Composites,”Materials Science and Technology 5, 1989, 1–7.Google Scholar
  11. 11.
    Hasson, D. F. and Crowe, C. R., ‘Fracture Toughness of SiC/Al Metal Matrix Composites’, inProceedings Conf. ‘Strength of metals and alloys’, Pergamon Press, Montreal, 1985, pp. 1515–1520.Google Scholar
  12. 12.
    Davidson, D. L., ‘Fracture Surface Roughness as a Gauge of Fracture Toughness: Aluminium-Particulate SiC Composites’,Journal of Materials Science 24, 1989, 681–687.CrossRefGoogle Scholar
  13. 13.
    Hamouda, A. M. S. and Hashmi, M. S. J. ‘Mechanical Properties of Aluminium Metal Matrix Composites Under Impact loading”, inProceedings Int. Conf. on “Advances in Materials and Processing Technologies’, Dublin, 1993, pp. 2183–2196.Google Scholar
  14. 14.
    Nardone, V. C., Strife, J. R. and Prewo, K. M., ‘Microstructurally Toughened Particulate-Reinforced Aluminum Matrix Composites’,Metallurgical Transactions 22A, 1991, 171–182.Google Scholar
  15. 15.
    Bonollo, F., Brondolin, V., Castelli M. and Garagnani, G. L., ‘Mechanical Behaviour of Forged Al Composites”, inProceedings 4th Int. Conf. ‘ATA-MAT ‘94’, Turin, 1994, pp. 127–136.Google Scholar
  16. 16.
    Ceschini, L., Garagnani, G. L., Poli, G. and Bonollo, F., ‘Tensile Tests of Al2O3 Particles Reinforced AA2014 Aluminium Alloy at Temperatures Ranging from 25 to 200°C’, inProceedings ‘4th Eur. Conf. on Advanced Materials and Processes-EUROMAT ‘95’, Padova, vol. 1, 1995, pp. 427–430.Google Scholar
  17. 17.
    McLeod, A. D. and Gabriel, C. M., ‘Kinetics of the Growth of Spinel, MgAl2O4, on Alumina Particulate in Aluminum Alloys Containing Magnesium’,Metallurgical Transactions 23A, 1992, 1279–1283.Google Scholar
  18. 18.
    ASM Metals Handbook, Vol. 2: ‘Properties and Selection: Non-Ferrous Alloys and Pure metals’, ASM, Metals Park, Ohio, 1979.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • F. Bonollo
    • 1
  • L. Ceschini
    • 2
  • G. L. Garagnani
    • 2
  1. 1.DIMEGUniversity of PadovaPadovaItaly
  2. 2.Institute of MetallurgyUniversity of BolognaBolognaItaly

Personalised recommendations