Skip to main content

Factorial design model for proportioning self-consolidating concrete

Abstract

A factorial design was carried out to model the influence of key mixture parameters on properties affecting the performance of self-consolidating concrete (SCC). Such responses included slump flow and rheological parameters, filling capacity and V-funnel flow to assess restrained deformability, surface settlement to evaluate stability after casting, and compressive strength. Thirty two mixtures were prepared to derive the statistical models and nine others to evaluate their accuracy. The models are valid for a wide range of mixture proportioning. The paper presents the derived models that unable the identification of underlying primary factors and thier interactions that influence the modelled responses of interest for self-consolidating concrete. Such parameters can be useful to reduce the test protocol needed for the proportioning of self-consolidating concrete. The use-fulness of the models to better understand trade-offs between mixture parameters and compare the responses obtained from various test methods are highlighted.

Résumé

Pour la formulation du béton autoplaçant (BAP) plusieurs gâchées s'imposent, étant donné qu'il faut maîtriser tous les facteurs affectant les propriétés à l'état frais et durci du béton. Des modèles statistiques ont été générés à partir de la réalisation d'un plan d'expérience. Ces modèles identifient les paramètres importants de la formulation sur la performance du béton autoplaçant: la déformabilité caractérisée par l'essai de l'étalement, les paramètres rhéologiques, la capacité de remplissage, et l'entonnoir; la stabilité traduite par le test du tassement et la résistance à la compression. La modélisation a nécessité un total de 32 gâchées de béton. Neuf autres mélanges ont été ajoutés afin dè vérifier la validation des modèles établis. Ce papier présente les modèles générés qui traduisent l'effet des paramètres principaux ainsi que leur intéractions sur les réponses mesurées. L'utilité des modèles à établir une meilleure compréhension entre les paramètres des mélanges et de trouver des corrélations entre les différents test réalisés est discutée.

This is a preview of subscription content, access via your institution.

References

  1. Nanayakkara, A., Ozawa, K. and Maekawa, K., ‘Flow and segregation of fresh concrete in tapered pipes’, Proceedings, 3rd International Symposium on Liquid-Solid Flows, ASME, FED-75 (1988) 139–144.

    Google Scholar 

  2. Ozawa, K., Maekawa, K., Kunishima, M. and Okamura, H., ‘High-performance concrete based on the durability of concrete structures’, Proceedings, 2nd East Asia Pacific Conference on Structural Engineering and Construction, Chiang-Mai (1989).

  3. Ozawa, K., Maekawa, K. and Okamura, H., ‘Development of high performance concrete’,Journal of the Faculty of Engineering, the University of Tokyo (B)XLI (3) (1992) 381–439.

    Google Scholar 

  4. Nagataki, S. and Fujiwara, H., ‘Self-compacting property of highly flowable concrete’,ACI SP 154 (1995) 301–314.

    Google Scholar 

  5. Khayat, K. H., Manai, K. and Trudel, A., ‘In-situ mechanical properties of wall elements cast using self-consolidating concrete,’ACI Materials Journal,94 (6) (1997) 491–500.

    Google Scholar 

  6. Khayat, K. H., ‘Use of viscosity-modifying admixture to reduce top-bar effect of anchored bars in fluid concrete,’Ibid. 95 (2) (1998) 158–167.

    Google Scholar 

  7. Petrov, N., ‘On the bond and corrosion resistance of steel reinforcement embedded in self-consolidating concrete’, (only available in French) Masters Thesis, Université de Sherbrooke, Canada (1995).

    Google Scholar 

  8. Okamura, H. and Ozawa, K., ‘Mix design for self-compacting concrete’, Concrete Library of the Japan Society of Civil Engineering, (25) (1995).

  9. Sedran, T., de Larrard, F., Hourst, F. and Contamines, C., ‘Mix design of self-compacting concrete (SCC)’, ‘Proceedings, RILEM International Conference on Production Methods and Workability of Concrete, Ed. Bartos, P. J. M., Marrs, D. L. and Cleland, D. J., E&FN Spon, London (1996) 339–350.

    Google Scholar 

  10. Sedran, T. and de Larrard, F., ‘Rene-LCPC: software to optimize the mix design of high performance concrete’, Proceedings, BHP 96, 4th International Symposium on Utilization of High Strength/High Performance Concrete, Ed. de Larrard, F., Lacroix, R., Paris (1996) 169–178.

  11. Petersson, O., Billberg, P. and Van, B. K., ‘A model for self compacting concrete’, Proceedings, RILEM International Conference on Production Methods and Workability of Concrete, Ed. Bartos, P. J. M., Marrs, D. L., and Cleland, D. J., E&FN Spon, London, (1996) 483–492.

    Google Scholar 

  12. Beaupré, D., ‘Rheology of high performance concrete’, Ph.D. Thesis, University of British Columbia, Canada (1994).

    Google Scholar 

  13. Ozawa, K., Sakata, N. and Okamura, H., ‘Evaluation of selfcompactability of fresh concrete using the funnel test’, Proceedings, Japan Society of Civil Engineering, (25) (June 1995) 59–75.

    Google Scholar 

  14. Yurugi, M., Sakata, N., Iwai, M. and Sakai, G. ‘Mix proportion for highly workable concrete’, Proceedings, Concrete 2000, Dundee (1993).

  15. Manai, K., ‘Evaluation of the effect of chemical and mineral admixtures on the workability, stability, and performance of selfcompacting concrete’, (only available in French) Masters Thesis, Université de Sherbrooke, Canada (1995).

    Google Scholar 

  16. Trudel, A., ‘Workability, uniformity, and structural behavior of high-performance self-compacting concrete’, (only available in French) Masters Thesis, Université de Sherbrooke, Canada (1996).

    Google Scholar 

  17. Study on reducing unit powder content of high fluidity concrete by controlling powder particle size distribution, Concrete Library of JSCE N-28 (December 1996).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial Note Prof. Dr. K. H. Khayat works at the University of Sherbrooke, a RILEM Titular member. He participates to the work of RILEM TC 145-WSM (Workability of special concrete mixes) and of RILEM TC 174-SCC (Self-Compacting Concrete).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khayat, K.H., Ghezal, A. & Hadriche, M.S. Factorial design model for proportioning self-consolidating concrete. Mat. Struct. 32, 679–686 (1999). https://doi.org/10.1007/BF02481706

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481706

Keywords