Advertisement

Materials and Structures

, 33:14 | Cite as

Durability design of concrete structures—Committee report 130-CSL

  • A. Sarja
RILEM Technical Committees

Abstract

The idea of the durability design of concrete structures is developed as statistical theory which is based on the probability of failure taking into account the time as a parameter of the performance function and of the loading function. The generalised loading includen environmental effects into the structure like mechanic loading and weathering (sun, temperature changes, frost, moisture, pollutants, oxygen etc.). As generalised capacities like loading capacity, tightness, deflections, cracking, smoothness of the surface and visual fitness are treated. The statistical theory is transformed into practical deterministic durability design applying partial safety factor method. Important addition into the ordinary partial safety factors is the lifetime safety factor which is introduced into a design for first time here. The static and dynamic performance parameters and the durability performance parameters are combined together in the final phase of design. Performance and service life calculation models is introduced into design method, and presented for six decradation processes. The article is based on the report of RILEM TC 130—CSL [31], where the author was serving as chairman.

Keywords

Service Life Concrete Structure Failure Probability Degradation Factor Durability Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

La notion de durabilité des constructions en béton est développée ici comme une théorie statistique basée sur la probabilité de rupture prenant en compte la donnée temporelle comme un paramètre de la fonction de performance et de la fonction de chargement. Le chargement généralisé comprend les effets environnementaux dans la construction tel que le chargement mécanique et les effets des intempéries (exposition au soliel, écarts de températures, gel, humidité, polluants, oxygène, etc.). Lorsque les capacités globales telles que les capacités de chargement, l'étanchéité, la flexion, la fissuration, la douceur de la surface et l'aspect visuel ont été traitées, la théorie statistique est appliquée dans une démarche de conception pratique et déterministique de la durabilité, mettant en œuvre un facteur partiel de sécurité introduit ici pour la première fois dans la conception. Les paramètres de performances statiques et dynamiques et les paramètres de performances de durabilité sont associés dans la phase finale de conception. Les modèles de calcul de performance et de durée de vie sont incorporé aux méthodes de conception, et présentés pour une série de six processus de dégradation. L'article est basé sur le rapport de la commission technique RILEM TC 130_CSL: ‘Calculation methods for service life design of concrete structures’, qui était présidée par l'auteur du présent rapport.

References

  1. [1]
    Alonso, C. and Andrade, C., ‘Life time of rebars in carbonated concrete’, Proceedings of the 10th European Corrosion Congress. Barcelona 1993. Progress in the understanding and prevention of corrosion. Vol 1. p. 634–641.Google Scholar
  2. [2]
    Andrade, C., Alonso, C., Gonzales, I. A. and Rodriguez, J., ‘Remaining Service Life of Corroding Structures’, Proceedings of the IABSE Symposium Durability of Structures. Lisbon 1989. p. 359–364.Google Scholar
  3. [3]
    Andrade, C., Alonso, M. C., Pettersson, K., Somerville, G. and Tuutti, K., ‘The practical assessment of damage due to corrosion’, Proceedings of Int. Conf. concrete Across Borders 1994. Danish Concrete Association. 1994. p. 337–350.Google Scholar
  4. [4]
    Bakker, R., ‘Model to calculate the rate of carbonation in concrete under different climatic conditions’, May 1993. Paper no 104-CEN TC 104/WG1/TG1/Panel 1.Google Scholar
  5. [5]
    BS 7543, ‘Guide to durability of buildings and building elements, products and components’, London: British Standards Institution, 1992. 48 p.Google Scholar
  6. [6]
    CEB-FIP model code 1990. First predraft 1988. Lausanne: Comité Euro-International du Béton, 1988. U. S. (CEB Bulletin d'information 190a).Google Scholar
  7. [7]
    Dhir, R. K., Jones, M. R. and Ahmed, E. E. H., ‘Concrete durability: estimation of chloride concentration during design life’,Magazine of Concrete Research 43 (1991) (154) 37–44.CrossRefGoogle Scholar
  8. [8]
    ENV 1991-1. Eurocode 1: Basis of Design and Actions on Structures. Part 1: Basis of Design. CEN/TC250. Final project team document. 1993. 76 s.Google Scholar
  9. [9]
    Fagerlund, G., Somerville, G. and Tuutti, K., ‘The residual service life of concrete exposed to the combined effect of frost attack and reinforcement corrosion’, Proceedings of Int. Conf. Concrete Across Borders 1994. Danish Concrete Association. 1994. p. 351–364.Google Scholar
  10. [10]
    Huovinen, S., ‘Abrasion of concrete by ice in arctic sea structures’, (Doctoral thesis), Publications No. 62, Technical Research Centre of Finland, 1990.Google Scholar
  11. [11]
    Häkkinen, T., ‘Influence of cementing materials on the permeability of concrete’, Espoo 1991. Technical Research Centre of Finland. Research Notes 750. 84 p. +app. 27 p.Google Scholar
  12. [12]
    Häkkinen, T., ‘Influence of high slag content on the basic mechanical properties and carbonation of concrete’, Espoo 1993. Technical Research Centre of Finland. Publications 141. 98 p.+app. 46 p.Google Scholar
  13. [13]
    Jiang, Y., Saito M. and Sinha K. C., ‘Bridge performance prediction model using Markov chain’, Transportation research record 1180. p. 25–32.Google Scholar
  14. [14]
    Kasami, H., Izumi, I., Tomosawa, F. and Fukushi, I., ‘Carbonation of concrete and corrosion of reinforcement in reinforced concrete’, First Joint Workshop on Durability of Reinforced Concrete, Australia-Japan Science and Technology Agreement, Tsukuba, Japan 30 September-2 October 1986, 12 p.Google Scholar
  15. [15]
    Kraker, A., De Tichler, J. W. and Vrouwenvelder, A. C. W. M., ‘Safety, reliability and service life of structures’,Heron 27 (1) (1982) 85p.Google Scholar
  16. [16]
    Masters, L. W. and Brandt, E., ‘Systematic methodology for service life prediction of building materials and components’, Report of the TC 71-PSI Prediction of service life of building materials and components. Materials and Structures 1989, Vol. 22, pp. 385–392.CrossRefGoogle Scholar
  17. [17]
    Matala S., ‘Service life model for frost resistance of concrete based on properties of fresh concrete’, Nordisk Vägtekniska Förbundet, Broseminarium, Korsär, Denmark 1991, 18p.Google Scholar
  18. [18]
    Parrot, L., ‘Design for avoiding damage due to carbonation induced corrosion’, April 1992. Paper no 62-CEN TC 104/WG1/TG1/Panel 1.Google Scholar
  19. [19]
    ‘Performance criteria for building materials’, Final report of the RILEM committee 31-PCM. Espoo 1986. Technical Research Centre of Finland, Research Notes 644.74 p. +app. 36 p.Google Scholar
  20. [20]
    Pihlajavaara, S. E., ‘The prediction of service life with the aid of multiple testing, reference materials, experience data, and value analysis’, Espoo 1984, VTT Symposium 48, Vol. 1. pp. 37–64.Google Scholar
  21. [21]
    Pihlajavaara, S. E., ‘Contributions for the development of the estimation of long-term performance and service life of concrete’, Espoo 1994. Helsinki University of Technology. Faculty of Civil Engineering and Surveying, Report 3, 26p.+articles 49p.Google Scholar
  22. [22]
    Schiessl. P., ‘Zur frage der zulässigen Rissbreite und der erforderlichen Betondeckung in Stahlbetonbau unter besonderer berucksichtigung der Karbonatisierung des Betons’, Berlin 1976, Deutscher Ausschuss fur Stahlbeton, Heft 255. 175 p.Google Scholar
  23. [23]
    Sentler L., ‘Stochastic characterization of carbonation of concrete’, Proceedings of the Third International concrete on the Durability of Building Materials and Components. Espoo 1984. VTT Symposium 50. p. 569–580.Google Scholar
  24. [24]
    Siemes, A., Vrouwenvelder, A. and Beukel, A. van den., ‘Durability of buildings: a reliability analysis’,Heron 30 (3) (1985) 3–48.Google Scholar
  25. [25]
    Tuutti, K., ‘Corrosion of steel in concrete’, Stockholm 1982, Swedish Cement and Concrete Research Institute, CBI research 4:82.304 p.Google Scholar
  26. [26]
    Vesikari E., ‘Corrosion of reinforcing steels at cracks in concrete’, Espoo 1981, Technical Research Centre of Finland, Research reports 11/1981. 39p.+app.4p.Google Scholar
  27. [27]
    Vesikari E., ‘Durability design of concrete structures with respect to frost attack’, Proceedings of the Fourth international Symposium on Cold Region Development. June 13–16, 1994. Association of Finnish Civil Engineers RIL. 2p.Google Scholar
  28. [28]
    Vesikari, E., ‘Betonirakenteiden käyttöikämitoitus’, (Service life design of concrete structures). Helsinsi 1995. Association of Finnish Civil Engineers RIL. RIL 183-4.9. (in Finnish, in print)Google Scholar
  29. [29]
    Vesikari, E., ‘Service life of concrete structures with regard to corrosion of reinforcement’, Espoo 1988, Technical Research Centre of Finland, Research reports 553. 53 p.Google Scholar
  30. [30]
    Vuorinen, J., ‘Studies on durability of concrete in hydraulic structures’, Helsinki 1974, Finnish Committee on Large Dams. 24 p.Google Scholar
  31. [31]
    Sarja, A. and Vesikari, E. (Editors), ‘Durability design of concrete structures’, Manuscript of RILEM Report of TC 130-CSL. RILEM Report Series 14. E&FN Spon, Chapman & Hall, 1996. 165 pp.Google Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • A. Sarja
    • 1
  1. 1.Technical Research Centre of FinlandVTT Building TechnologyFinland

Personalised recommendations