Skip to main content
Log in

Technological characteristics of the calcined limestone from Agios Panteleimonas, Macedonia, Greece

  • Local Materials
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The gray-green limestone from Agios Panteleimonas is studied in this paper after submitting it in special technological analyses in order to determine the possibility for quicklime production. Cubic test specimens with mean 50 mm edge length were calcined at 850, 950 and 1,050°C, with 150 min preheating time and 120 min retention time at each calcination temperature. At the dissociation temperature of pure calcite (898°C) only one half of the initial limestone has been calcined. The dissociation of the specimens started at 740°C and almost completed at 1,050°C. Probably, the large edge length of the cubic specimens and the low retention time are responsible for the incomplete calcination at 1,050°C. The dry apparent weight of the calcined lime-stone (1.577 g/cm3), its low shrinkage (0.1–0.3%), the 2% impurities content and the 24% value of the attrition and abrasion resistance, characterize this quicklime and classify it to the high quality products.

Résumé

Dans cet article, le calcaire gris-vert d'Agios Panteleimonas est étudié par rapport à la possibilité de son utilisation pour la production de chaux, après avoir été soumis à des essais technologiques spéciaux. Des éprouvettes cubiques de 50 mm de côté ont été calcinées à 850, 950 et 1050°C, chauffées pendant 120 min à chaque température, après leur préchauffage pendant 150 min. La dissociation des éprouvettes a été réalisée par augmentation de la température de 740°C à 1 050°C. Dans ce cadre, seulement la moitié du calcaire initial a été calcinée à la température de dissociation de la calcite pure (898°C). La grande taille des éprouvettes et la courte durée des essais, sont responsables de la calcination incomplète, à la température de 1 050°C. La masse volumique apparente sèche du calcaire calciné (1,577g/cm3), son retrait faible (0,1–0,3%), le taux d'impuretés (2%), le coefficient d'attrition (24%) et la résistance à l'abrasion, caractérisent cette chaux vive et la classent comme étant un produit de haute qualité.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boynton, R. S., ‘Chemistry and Technology of Limestone’, 2nd Edn. (Wiley & Sons, N. York, 1980).

    Google Scholar 

  2. Harben, P. W., ‘The Industrial Minerals Handybook’, (Ind. Miner. Div., Metal Bull. PLC, London, 1992).

    Google Scholar 

  3. Power, T., ‘Limestone specifications. Limiting constraints on the market’,Ind. Minerals 10 (1985) 65–91.

    Google Scholar 

  4. Kantiranis, N., ‘Petrological, geochemical and technological characteristics of the Jurassic limestone from Agios Panteleimonas, Florina’, M.S. Thesis, Aristotle University of Thessaloniki (1998).

  5. Schultz, L. G., ‘Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale’,US Geol. Surv. Sp. Paper 391-C (1964).

  6. Perry, E. and Hower, J., ‘Burial diagenesis in Gulf coast pelitic sediments’,Clays Clay Miner. 18 (1970) 165–177.

    Article  Google Scholar 

  7. Bieniawski, Z. T., ‘The point-load test in geotechnical practice’,Eng. Geol. 9 (1975) 1–11.

    Article  Google Scholar 

  8. Vallardi, F. L., ‘Marmi Italliani. Guida Tecnica’, (Ital. Inst. Foreign Trade, Rome, 1982).

    Google Scholar 

  9. Job, A. R., ‘A New Look at Calcination’, National Lime Association Operating Meeting, Banff, Canada (1973) (unpubl.).

  10. Mayer, R. P. and Stowe, R. A., ‘Physical Characterization of Limestone Calcines’, ASTM STP462 (1964), 209–227.

  11. Deer, W. A., Howie R. A. and Zussman, J. ‘An Introduction to the Rock-Forming Minerals’, 2nd Edn. (Longman, London, 1992).

    Google Scholar 

  12. Clark, J. B., ‘Deformation moduli of rocks’, ASTM STP402 (1966), 133–174.

  13. Irfan, T. W. and Dearman, W. R., ‘Engineering classification and index properties of a weathered granite’,Bull. IAEG 17 (1978) 79–90.

    Google Scholar 

  14. Auger, F., ‘Influence des fluides interstitiels sur la vitesse du son dans les matériaux de construction. Mesures expérimentales et conséquences sur les diagnostics d'altérabilité’,Interm Measurm Testing Civil Engin., Lyon (1988) 259–268.

  15. Topal, T., ‘Ultrasonic testing of artificially weathered Cappadocian tuff’, in: ‘Preserv. Restor. Cultur. Heritage’, Proc. Congr. LCP '95, Montreux (1995) 205–212.

  16. Christaras, B., Auger, F. and Mosse, E., ‘Determination of the elastic moduli of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods to the direct static one’,Mater. Struct. 27 (1994) 222–228.

    Article  Google Scholar 

  17. Christaras, B., ‘Anisotropy effects on the elastic parameters of rocks; determinatión using ultrasonic techniques’, Proc. 7th Intern. Congr. Geol. Soc. Greece, Thessaloniki 4 (1994) 381–387.

    Google Scholar 

  18. Hamrol, A., ‘A quantitative classification of the weathering and weatherability of rocks’, Proc. 5th Intern. Conf. Soil Mechanics Foundation Engin., Paris 2 (1961) 771–774.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note The authors work at the Aristotle University of Thessaloniki, a RILEM Associate Member.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kantiranis, N., Tsirambides, A., Filippidis, A. et al. Technological characteristics of the calcined limestone from Agios Panteleimonas, Macedonia, Greece. Mat. Struct. 32, 546–551 (1999). https://doi.org/10.1007/BF02481640

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481640

Keywords

Navigation