Materials and Structures

, Volume 32, Issue 7, pp 506–519 | Cite as

Influence of maturity on creep of high performance concrete with sealed curing

  • B. Persson
Scientific Reports

Abstract

This article outlines an experimental and numerical study of basic creep in High Performance Concrete. About 100 cylinders (studies of creep and shrinkage) and 400 cubes (for studies of hydration, internal relative humidity, and strength) were tested. The ambient climate was held constant at 20°C. One concrete was studied at other temperatures between-20°C and 60°C. Analyses were carried out of quasi-instantaneous deformation, short-and longterm basic creep, autogenous shrinkage, hydration, internal relative humidity, and compressive strength. The project was carried out between 1992 and 1996.

Keywords

Creep Rate Silica Fume Strength Ratio High Performance Concrete Autogenous Shrinkage 

Résumé

Cet article décrit une étude expérimentale et numérique du fluage de base dans un béton de haute performance. Une centaine de cylindres (études de fluage et de retrait) et 400 cubes (pour étude de l'hydratation, de l'humidité relative interne, et de la résistance) ont été testés. Le climat ambiant a été constamment maintenu à+20°C. Un béton a fait l'objet d'une étude à d'autres températures comprises entre-20°C et+60°C. Des analyses ont été réalisées portant sur une déformation quasi-instantanée, sur un fluage de base à court et long terme, sur un retrait autogène, sur l'hydrantation, sur l'humidité relative interne et sur la résistance à la compression. Le projet s'est déroulé entre 1992 et 1996.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Helland, S., ‘Utilisation of HPC’ in Proceedings of the 4th International Symposium on Utilisation of High-strength/High-Performance concrete, Paris (1996) 67–73.Google Scholar
  2. [2]
    Person, B., ‘Self-desicating High-Strength Concrete Slabs’ in Proceedings of the Symposium on Utilisation of Highstrength/High-Performance concrete, Lillehammer, Norway (1993) 882–889.Google Scholar
  3. [3]
    Penttala, V., ‘Fast in-situ Concretes’ in Proceedings of the 16th Nordic Concrete Research Meeting: Espoo, Finland. 1996 (Edited by Norsk Betongförening) 70–71.Google Scholar
  4. [4]
    Müller, H. S. and Küttner, C. H., ‘Characteristics and Prediction of Creep of High Performance Concrete. Material Properties and Design’ in Proceedings of the Fourth Weimar Workshop on HPC held at Hochschule für Architektur und Bauwesen (HAB): Weimar, Germany. 1995 (Edited by Wittmann, F.H. and Schwesinger, P., AEDIFICATIO) 145–162.Google Scholar
  5. [5]
    Persson, B., ‘Quasi-instantaneous and Long-term Deformations of HPC with Some Related Properties’, Doctoral Thesis, Report TVBM-1016, (Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1998) 500 pp.Google Scholar
  6. [6]
    Persson, B., ‘Shrinkage of Filler-optimised High-Performance Concrete’ in Proceedings of the 16th Nordic Concrete Research Meeting, Espoo, Finland. 1996 (Edited by Norsk Betongforening) 85–87.Google Scholar
  7. [7]
    Hassanzadeh, M., ‘Fracture Mechanical Properties of High-Performance Concrete’, Report M4:05 (Division of Building Materials. Lund Institute of Technology, Lund, Sweden, 1994) 9–15.Google Scholar
  8. [8]
    Persson, B., ‘Self-desiccation and its importance in concretes technology’,Mater. Struct. 30 (1997) 293–305.Google Scholar
  9. [9]
    Persson, B., ‘Hydration and Strength of High-Performance Concrete’,Advanced Cement Based Materials 3 (Elsevier Science Inc.: New York, NY 10010, 1996) 107–123.Google Scholar
  10. [10]
    Acker, P., ‘Recommendation for Measurement of Time-dependent Strains of Concrete Loaded in Compression’, in Proceedings of the Fifth International RILEM Symposium, Barcelona, Spain (E&FN Spon, London, England, 1993) 849–858.Google Scholar
  11. [11]
    Schneider, U., ‘Specimen sizes’, Personal communication, Weimar, Germany, (1995).Google Scholar
  12. [12]
    Persson, B., ‘Basic Creep of High-Performance Concrete’, Report M6:14 (Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1995) 292 pp.Google Scholar
  13. [13]
    Persson, B., ‘(Early) basic creep of High-Performance Concrete’, in Proceedings of the 4th International Symposium on Utilisation of High-strength/High-Performance concrete, Paris (1996) 405–414.Google Scholar
  14. [14]
    Bazant, Z. P. ‘Creep and shrinkage prediction model for analysis and design of concrete structure-model B3’,Mater. Struct. 28 (1995) 357–365.CrossRefGoogle Scholar
  15. [15]
    Hansen, T. C., ‘Theories of Multiphase Material Applied to Concrete, Cement Mortar and Cement Paste’, Report 39 (The Swedish Cement-and Concrete Research Institute, CBI: Stockholm, Sweden, 1966) 22.Google Scholar
  16. [16]
    Persson, B., ‘Hydration, Structure and Strength of High-Performance Concrete’, Licentiate Thesis, Report TVBM-1009 (Division of Building Materials. Lund Institute of Technology: Lund, Sweden, 1992) 379 pp. (Only available in Swedish with English summary).Google Scholar
  17. [17]
    Fagerlund, G., ‘Relationship between the porosity and the mechanical properties of materials’, Report 26 (Division of Building Physics. Lund Institute of Technology, Lund, Sweden, 1972) 197–221.Google Scholar
  18. [18]
    Stark, J., ‘Formation of unstable ettringite at 0°C’, Personal communication, Weimar, Germany (1995 and 1997).Google Scholar
  19. [19]
    Stark, J. and Bollmann, K., ‘Investigations on Surface Cracking Concrete High-ways’. Hochschule für Architektur und Bauwesen Weimar. Bulletin 6/7. Vol. 41 (Wissenschaftige Zeichnung von Hochschule für Architektur und Bauwesen: Weimar, Germany, 1995) 65–74. (Only available in German).Google Scholar
  20. [20]
    Stark, J., ‘Correlation between Cement Hydration and Durability of Concrete’, Hochschule für Architektur und Bauwesen Weimar. Festkolloquium am 31. Mai 1996 (Universität-GH-Siegen, Labor für, Bau-und Werkstoffchemie, Siegen, Germany, 1996) 5–21. (Only available in German.)Google Scholar
  21. [21]
    Bjerkeli, L., Tomaszewics, A. and Jensen, J. J. (1989), ‘Deformation Properties and Ductility of High-Strength Concrete’, 2nd International Symposium on Applications of High-Strength Concrete. Berkeley. ACI SP-121. 1989, Ed. by H Weston, 1993 Pp. 215–238.Google Scholar
  22. [22]
    Persson, B., ‘Creep of High-Performance Concrete’, Report M6:28 (Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1997) 82–100.Google Scholar

Copyright information

© RILEM 1999

Authors and Affiliations

  • B. Persson
    • 1
  1. 1.Division Building MaterialsLund Institute of TechnologyLundSweden

Personalised recommendations