Materials and Structures

, Volume 37, Issue 1, pp 43–58 | Cite as

Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties

  • F. -J. Ulm
  • G. Constantinides
  • F. H. Heukamp


There is an ongoing debate, in Concrete Science and Engineering, whether cementitious materials can be viewed as poromechanics materials in the sense of the porous media theory. The reason for this debate is that a main part of the porosity of these materials manifests itself at a scale where the water phase cannot be considered as a bulk water phase, but as structural water; in constrast to water in the gel porosity and the capillary porosity. The focus of this paper is two-fold: (1) to review the microstructure of cementitious materials in the light of microporomechanics theory by starting at the scale where physical chemistry meets mechanics, and which became recently accessible to mechanical testing (nanoindentation):(2) to provide estimates of the poroelastic properties (drained and undrained stiffness, Biot coefficient, Biot modulus, Skempton coefficient) of cementitious materials (cement paste, mortar and concrete) by means of advanced homogenization techniques of microporomechanics. This combined experimental-theoretical microporomechanics approach allows us to deliver a blueprint of the elementary poroelastic properties of all cementitious materials, which do not change from one cementitious material to another, but which are intrinsic properties. These properties result from the intrinsic gel porosity of low density and high density C-S-H, which yield a base Biot coefficient of 0.61<b⪯0.71 and a Skempton coefficient ofB=0.20–0.25. While the base Biot coefficient decreases gradually at larger scales, because of the addition of non-porous solid phases (Portlandite,..., aggregates), it is shown that the Skempton coefficient is almost constant over 3–5 orders of magnitude.


Cementitious Material Porous Matrix Concrete Research Interfacial Transition Zone Ultrasonic Pulse Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Une question divise encore la communauté scientifique du sujet de la nature des bétons: les bétons peuvent-ils être considérés comme des milieux poreux au sens de la théorie des milieux poreux? Ce débat provient de la nature d'une partie de la porosité des bétons. Cette dernière se manifeste à une échelle où la phase aqueuse ne peut plus être considérée comme un simple fluide newtonien, mais comme une phase structurale, contrairement à la porosité capillaire ou celle du gel. L'objectif de cet article est double: (1) Décrire la microstructure des ciments sous l'angle de la théorie de la micro-poromécanique, en partant d'une échelle décrite à la fois par la physico-chimie et la mécanique, et qui est récemment devenue accessible aux tests mécaniques (nanoindentation); (2) Estimer les propriétés poroélastiques (élasticité drainée ou non drainée, coefficient de Biot, module de Biot, coefficient de Skempton) des matériaux dérivés du ciment (ciment, mortier et béton) à l'aide des techniques d'homogénéisation de la micro-poromécanique. Cette approche micro-poromécanique à la fois expérimentale et théorique nou permet de reconnaître une marque de fabrique de tous les ciments, qui ne change pas d'un matériau à l'autre, mais qui donne accès à leurs propriété inrinsèques. Ces propriétés résultent de la porosité intrinsèque au gel des C-S-H à faible et forte densités, qui donnent un coefficient de Biot entre b=[0,61–0,71], et un coefficient de Skempton B=[0,20–0.25]. Tandis que le coefficient de Biot diminue progressivement aux grandes échelles, en raison de la contribution des phases solides non poreuses (Portlandite,... granulats), le coefficient de Skempton est presque constant sur une plage de 3 a 5 ordres de grandeur.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Biot, M.A., ‘General theory of three dimensional consolidation’,Journal of Applied Physics 12 (1941) 155–164.MATHCrossRefGoogle Scholar
  2. [2]
    Coussy, O., ‘Mechanics of Porous Continua’, (Wiley and Sons, Chichester, UK, 1996).MATHGoogle Scholar
  3. [3]
    Wittmann, F.H., ‘Determination of the physical properties of cement paste’,Deutscher Ausschuss für Stahlebeton,232, W. Ernst and Son, Berlin, Germany (1974) 1–63 [in Germann].Google Scholar
  4. [4]
    Bažant, Z.P., ‘Themodynamics of interacting continua with surfaces and creep analysis of concrete structures’,Nuclear Engrg. and Design 20 (1972) 477–505.CrossRefGoogle Scholar
  5. [5]
    Wittmann, F.H., ‘Creep and shrinkage mechanisms in concrete’, in Z.P. Bažant and F.H. Wittmann, Editors, ‘Creep and Shrinkage of Concrete’ (J. Wiley and Sons, New York, 1988).Google Scholar
  6. [6]
    Terzaghi, K., ‘Principles of soil mechanics. A summary of experimental results of clay and sand’,Eng. News Rec. (1925) 3–98.Google Scholar
  7. [7]
    Fauchet, B., Coussy, O. Carrère, A. and Tardieu, B., ‘Poroplastic analysis of concrete dams and their foundations’,Dam Engineering, Vol.II(3) (1991) 165–192.Google Scholar
  8. [8]
    Bary, B., Bournazel, J.-P. and Bourdarot, E., ‘Porodamage approach applied to hydrofracture analysis of concrete’,Journal of Engineering Mechanics, ASCE126(9) (2000) 937–943.CrossRefGoogle Scholar
  9. [9]
    Heukamp, F.H., Ulm, F.J. and Germaine, J.T., ‘Mechanical properties of calcium-leached cement pastes: Triaxial stress states and the influence of the pore pressures’,Cement and Concrete Research 31(5) (2001) 767–774.CrossRefGoogle Scholar
  10. [10]
    Vichit-Vadakan, W. and Scherer, G.W., ‘Measuring permeability of rigid materials by a beam-bending method: III. Cement paste’,J. Am. Ceram. Soc. 85(6) (2002) 1537–1544.CrossRefGoogle Scholar
  11. [11]
    Coussy, O., Eymard, R. and Lassabatère, T., ‘Constitutive modelling of unsaturated drying deformable materials’,Journal of Engineering Mechanics, ASCE 124(6) (1998) 658–667.CrossRefGoogle Scholar
  12. [12]
    Meschke, G. and Grasberger, S., ‘Numerical modeling of coupled hygromechanical degradation of cementitious materials’,Journal of Engineering Mechanics, ASCE’,129(4) (2003) 383–392.CrossRefGoogle Scholar
  13. [13]
    Berryman, J.G., ‘Extension of poroelastic analysis to doubleporosity materials: new technique in microgeomechanics’,Journal of Engineering Mechanics, ASCE 128(8) (2002) 840–847.CrossRefGoogle Scholar
  14. [14]
    Gassmann, F., ‘On the Elasticity of Porous Media’, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 96, (1951) 1–23 [in German].MATHMathSciNetGoogle Scholar
  15. [15]
    Brown, R.J.S. and Korringa, J., ‘On the dependence of the elastic properties of a porous rock on the compressibility of a pore fluid’,Geophysics 40 (1975) 608–616.CrossRefGoogle Scholar
  16. [16]
    Rice, J.R., ‘On the stability of dilatant hardening for saturated rock masses’,J. Geophys. Res. 80 (1975) 1531–1536.CrossRefGoogle Scholar
  17. [17]
    Velez, K., Maximilien, S., Damidot, D., Fantozzi, G. and Sorrentino, F., ‘Determination by nanoindetation of elastic modulus and hardness of pure constituents of Portland cement clinker’,Cement and Concrete Research 31(4) (2001) 555–561.CrossRefGoogle Scholar
  18. [18]
    Acker, P., ‘Micromechanical analysis of creep and shrinkage mechanisms’, in F.-J. Ulm, Z.P. Bažant and F.H. Wittmann, editors, ‘Creep, Shrinkage and Durability Mechanics of Concrete and other quasi-brittle Materials’, Cambridge, MA, August 2001 (Elsevier, Oxford UK, 2001) 15–25.Google Scholar
  19. [19]
    Constantinides, G., Ulm, F.-J., and van Vliet, K.J., ‘On the use of nanoindentation for cementitious materials’,Mater. Struct. (Special issue of Concrete Science and Engineering) 36 (257) (April 2003) 191–196.Google Scholar
  20. [20]
    Powers, T.C. and Brownyard, T.L., ‘Studies of the physical properties of hardened Portland cement paste’PCA Bulletin 22 (1948).Google Scholar
  21. [21]
    Château, X. and Dormieux, L., ‘Micromechanics of saturated and unsaturated porous media’,Int. J. Numer. Anal. Meth. Geomech. 26 (2002) 830–844.Google Scholar
  22. [22]
    Dormieux, L., Molinari, A. and Kondo, D., ‘Micromechanical approach to the behaviour of poroelastic materilas’,Journ. Mechanics and Physics of Solids 50 (2002) 2203–2231.MATHCrossRefGoogle Scholar
  23. [23]
    Dormieux, L. and Bourgeois, E., ‘Introduction à la micromécanique des milieux poreux’ (Presses de l'École Nationale des Ponts et Chaussées, Paris, France, 2003).Google Scholar
  24. [24]
    Zaoui, A., ‘Continuum micromechanics: survey’,Journal of Engineering Mechanics, ASCE 128(8) (2002) 808–816.CrossRefGoogle Scholar
  25. [25]
    Constantinides, G. and Ulm, F.-J., ‘The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling’,Cement and Concrete Research (2003) In press.Google Scholar
  26. [26]
    Constantinides, G. and Ulm, F.-J., ‘The elastic properties of calcium-leached cement pastes and mortars: a multi-scale investigation’, MIT CEE Report R02-01, (SM-Dissertation), Cambridge, MA, 2002.Google Scholar
  27. [27]
    Feldman, R.F. and Sereda, P.J., A new model of hydrated cement and its practical implications’,Eng. J. Can. 53 (1970) 53–59.Google Scholar
  28. [28]
    Tennis, P.D. and Jennings, H.M., ‘A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes’,Cement and Concrete Research 30(6) (2000) 855–863.CrossRefGoogle Scholar
  29. [29]
    Jennings, H.M., ‘A model for the microstructure of calcium silicate hydrate in cement paste’,Cement and Concrete Research 30(1) (2000) 101–116.MathSciNetCrossRefGoogle Scholar
  30. [30]
    Bernard, O., Ulm, F.-J. and Lemarchand, E., ‘A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials’,Cement and Concrete Research (2003) In press.Google Scholar
  31. [31]
    Garboczi, E.J. ‘Computational materials science of cement-based materials’,Mater. Struct. 26(156) (1993) 191–195.CrossRefGoogle Scholar
  32. [32]
    Li, G.Q., Zhao, Y., Pang, S.S. and Li, Y.O., ‘Effective Young's modulus estimation of concrete’,Cement and Concrete Research 29(9) (1999) 1455–1462.CrossRefGoogle Scholar
  33. [33]
    Hashin, Z. and Monteiro, P.J.M., ‘An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste’,Cement and Concrete Research 32(8) (2002) 1291–1300.CrossRefGoogle Scholar
  34. [34]
    Heukamp, F.H. and Ulm, F.-J., ‘Chemomechanics of calcium leaching of cement-based materials at different scales: The role of CH-dissolution and C-S-H degradation on strength and durability performance of materials and structures’, MIT-CEE Report R02-03 (D.Sc.-Dissertation), Cambridge, MA, 2002.Google Scholar
  35. [35]
    Monteiro, P.J.M. and Chang, C.T., ‘The elastic moduli of calcium hydroxide’,Cement and Concrete Research 25(8) (1995) 1605–1609.CrossRefGoogle Scholar
  36. [36]
    Eshelby, J.D., ‘The determination of the elastic field in an ellipsoidal inclusion, Proc. R. Soc. London A 241, (1957) 376–392.MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    Mori, T. and Tanaka, K., ‘Average stress in matrix and average elastic energy of materials with misfitting inclusions’,Acta Metallurgica 21(5) (1973) 1605–1609.CrossRefGoogle Scholar
  38. [38]
    Auriault, J.-L., Sanchez-Palencia, X., ‘Étude du comportement macroscopique d'unmilieu poreux saturé déformable’,Journal de Mécanique 16(4) (1977) 575–603.MATHMathSciNetGoogle Scholar
  39. [39]
    Thompson, M. and Willis, J.R., ‘A reformulation of the equations of anisotropic poroelasticity’,J. Appl. Mech. 58 (1991) 612–616.MATHGoogle Scholar
  40. [40]
    Ulm, F.-J., Heukamp, F.H. and Germaine, J.T., ‘Residual design strength of cement-based materials for nuclear waste storage systems’,Nuclear Engrg and Design 211(1) (January 2002) 51–60.CrossRefGoogle Scholar
  41. [41]
    Heukamp, F.H., Ulm, F.-J. and Germaine, J.T., ‘Poroplastic properties of calcium leached cement-based materials’,Cement and Concrete Research 33 (8) (August 2003) 1127–1136.CrossRefGoogle Scholar
  42. [42]
    Bernard, O., Ulm, F.-J. and Germaine, J.T., ‘Volume and deviator basic creep of calcium leached cement-based materials’,Cement and Concrete Research 33 (8) (August 2003) 1155–1173.CrossRefGoogle Scholar
  43. [43]
    Le Bellego, C., ‘Couplage chimie-mécanique dans les structures en béton attaquées par l'eau: étude expérimentale et analyse numérique’, PhD. Dissertation, ENS de Cachan, France, 2001.Google Scholar
  44. [44]
    ‘Standard test method for pulse velocity through concrete’, ASTM C597-83, 1991.Google Scholar
  45. [45]
    ‘Ultrasonic Pulse Velocity measurement’, BS 1881: Part 203, 1986.Google Scholar
  46. [46]
    ‘Test method for fundamental transverse, longitudinal, and torsional frequencies of concrete specimens’, ASTM C215-91, 1998.Google Scholar
  47. [47]
    ‘Recommendation for the measurements of dynamic modulus of elasticity’, BS 1881: Part 209, 1990.Google Scholar
  48. [48]
    Pundit manual, CNS Instruments Limited, 61–63 Homes Road, London, 1975.Google Scholar
  49. [49]
    Taylor, H.F.W., ‘Cement Chemistry’, 2nd Edition (Thomas Telford, London, 1997).Google Scholar
  50. [50]
    Ulm, f.-J., ‘Chemomechanics of concrete at finer scales’,Mater. Struct. 36 (August–September 2003) 426–438.Google Scholar

Copyright information

© RILEM 2000

Authors and Affiliations

  • F. -J. Ulm
    • 1
  • G. Constantinides
    • 1
  • F. H. Heukamp
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations